GapMind for catabolism of small carbon sources

 

Alignments for a candidate for uxuA in Acidovorax sp. GW101-3H11

Align D-mannonate dehydratase CC2812; ManD; EC 4.2.1.8 (characterized)
to candidate Ac3H11_600 Galactonate dehydratase (EC 4.2.1.6)

Query= SwissProt::Q9A4L8
         (403 letters)



>FitnessBrowser__acidovorax_3H11:Ac3H11_600
          Length = 382

 Score =  199 bits (507), Expect = 9e-56
 Identities = 139/410 (33%), Positives = 211/410 (51%), Gaps = 38/410 (9%)

Query: 3   KIIAAKTIVTCPGRNFVTLKIMTDEGVYGLGDATLNGRELAVEAYLTQHVIPCLIGRDAH 62
           KI    T +  P   F  LKI TDEG+ G G+  L GR   V A + + +   LIG+D  
Sbjct: 2   KITRLTTFIVPPRWCF--LKIETDEGITGWGEPVLEGRAHTVAAAVDE-LADYLIGKDPR 58

Query: 63  QIEDIWQYLYRGCYWRRGPVTMAAIAAVDTALWDIKGKIAGLPVYQLLGGACRVGVMVYG 122
            IED W  LYRG ++R G V M+A+A +D ALWDIKGK  G+PV +LLGG  R  + VY 
Sbjct: 59  HIEDHWTVLYRGGFYRGGGVHMSALAGIDQALWDIKGKALGVPVSELLGGNVRSHIKVYS 118

Query: 123 HANGETIDETLDNAAVYAQQGYKAIRLQTGVPGMSGTYGVSKDKFFYEPADSDLPKETIW 182
              G+   ET   A     +G+ A++       M+GT  V     + +  D         
Sbjct: 119 WIGGDRPSETAAAAQAAVARGFTAVK-------MNGTEEVQ----YVDSYD--------- 158

Query: 183 STERYLRSTPALFEAARERLGDDLHLLHDVHHRLTPIEAARLGKDLEPYRLFWMEDATPA 242
             ER L++  A+    RE +G ++ +  D H R+    A  L K+LEPY+L ++E+   +
Sbjct: 159 KVERCLQNVAAV----REAVGPNVGIGVDFHGRVHRPMAKVLVKELEPYKLMFIEEPVLS 214

Query: 243 ENQASFRLIRQHTTTPLAVGEIFNSIWDCKQLIEEQLIDYIRATVVHAGGITHLKKLASF 302
           E++ + + I + ++TP+A+GE   S WD K++++    D I+    HAGGIT  +K+AS 
Sbjct: 215 EHEEALKEIARISSTPIALGERLYSRWDFKRVLQGGYADIIQPDPSHAGGITETRKIASM 274

Query: 303 ADLHHVRTGCHGATDLSPVCMGAALHFDLSIPNFGVQE------YMRHTPETDAVF-PHA 355
           A+ + V    H    L P+ + A L  D    N  +QE      Y +     D V  P  
Sbjct: 275 AEAYDVALALH--CPLGPIALAANLQLDAVCYNAFIQEQSLGIHYNQANDLMDYVSNPEV 332

Query: 356 YTFKDGMLHPGDAPGLGVDIDEDLAAKYPYQ--RAYLPIARRLDGSMHDW 403
           + ++DGM+   + PGLG++++ED   +   +  R   P+ R  DGS  +W
Sbjct: 333 FAYEDGMVAIPNGPGLGIEVNEDYVRERAVEGHRWRNPVWRHRDGSFAEW 382


Lambda     K      H
   0.322    0.139    0.437 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 371
Number of extensions: 24
Number of successful extensions: 4
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 403
Length of database: 382
Length adjustment: 31
Effective length of query: 372
Effective length of database: 351
Effective search space:   130572
Effective search space used:   130572
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.9 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory