Align Benzoyl-CoA reductase electron transfer protein, putative (characterized, see rationale)
to candidate Ac3H11_3809 tungsten-containing formate dehydrogenase beta subunit
Query= uniprot:Q39TW5 (635 letters) >FitnessBrowser__acidovorax_3H11:Ac3H11_3809 Length = 635 Score = 268 bits (686), Expect = 4e-76 Identities = 175/521 (33%), Positives = 276/521 (52%), Gaps = 40/521 (7%) Query: 28 ISVCAGAGCLASGAAEVIAAFKTELEFHGLTTEVNTKGTGCPGFCERGPIVMIYPEGICY 87 + VC C +GA E++AA L G +V C G CE+ P+ +++ C Sbjct: 119 LRVCDSLSCSLAGARELLAALPERLRAAG-QGDVQVLAVPCVGRCEQAPVAVVHQ---C- 173 Query: 88 LKVKPEDVPEIVSHTIKEKKVVDRLLYEDPATGTRALRESDIPFYKNQQRNILSENLRLD 147 VP T+ E VV+ A +AL+ + +++I + +LR Sbjct: 174 ------PVPRATVDTVLE--VVESKPKRALARHPQALKAINFDVAALAEKSIPT-SLREV 224 Query: 148 SKSMDD---YLAIGGY-SALSKVLFQMTPEDVMGEIKKSNLRGRGGGGFPAWRKWEESRN 203 S + D Y A GGY +A + V +M E V+ ++ S LRG GG GFPA RKW R+ Sbjct: 225 SPAHTDLATYRAHGGYQTAAALVNGEMDAEAVLAAMEDSGLRGLGGAGFPAGRKWRIVRD 284 Query: 204 APDPIKYVIVNADEGDPGAFMDRALIEGNPHSILEGLIIGAYAVGAHEGFIYVRQEYPLA 263 P P + + VN DEG+PG F DR +E +PH LEG++I A VG +IY+R EY Sbjct: 285 QPAP-RLMAVNIDEGEPGTFKDRTYLERDPHRFLEGVLIAAQVVGTEAIYIYLRDEY--- 340 Query: 264 VENINLAIRQASERGFVGKDILGSGFDFT---VKVHMGAGAFVCGESSALMTALEGRAGE 320 + ++QA D L + +++ GAGA++CGE SA++ ++EG+ GE Sbjct: 341 -HGCRVLLQQA-------LDDLRAEPPCPLPHIELRRGAGAYICGEESAMIESIEGKRGE 392 Query: 321 PRPKYIHTAVKGVWDHPSVLNNVETWANVTQIITKGADWFTSYGTAGSTGTKIFSLVGKI 380 PR + + A G++ P++ +N ET V I+ +G WF S+G G G + FS+ G++ Sbjct: 393 PRMRPPYIAQVGLFGRPTLEHNFETLYWVRDIVERGPQWFASFGRHGRKGLRSFSVSGRV 452 Query: 381 TNTGLVEVPMGVTLRDIITKVGGGIPGGKKFKAVQTGGPSGGCIPEAMLDLPVDFDELTK 440 + G+ P G+T++++I + GG+ G + A GG SGG +P ++ +P+DFD L Sbjct: 453 KHPGVKLAPAGITVQELIDEYCGGLLDGHQLYAYLPGGASGGILPASLNQIPLDFDTLQP 512 Query: 441 AGSMMGSGGMIVMDEDTCMVDIARYFIDFLKDESCGKCTPCREGIRQMLAVLTRITVGKG 500 G +GS +IV+ + D A + F + ESCG+CTPCR G + T+ + Sbjct: 513 YGCFIGSAAVIVLSQHDRARDAALNVMRFFEHESCGQCTPCRVGTAK------AATLMEA 566 Query: 501 KEGDIELLEELAESTG-AALCALGKSAPNPVLSTIRYFRDE 540 + D +LL++LA+ G A++C LG++APNP+ +YF E Sbjct: 567 PQWDGDLLDDLAQVMGDASICGLGQAAPNPIRCIHKYFPHE 607 Lambda K H 0.319 0.138 0.420 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 946 Number of extensions: 49 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 1 Length of query: 635 Length of database: 635 Length adjustment: 38 Effective length of query: 597 Effective length of database: 597 Effective search space: 356409 Effective search space used: 356409 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 54 (25.4 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory