Align 3,4-dehydroadipyl-CoA semialdehyde dehydrogenase (NADP+) (EC 1.2.1.77) (characterized)
to candidate Ac3H11_3089 Benzaldehyde dehydrogenase
Query= BRENDA::Q13WK4 (531 letters) >FitnessBrowser__acidovorax_3H11:Ac3H11_3089 Length = 520 Score = 648 bits (1671), Expect = 0.0 Identities = 333/522 (63%), Positives = 391/522 (74%), Gaps = 8/522 (1%) Query: 1 MTELLKNHVAGQWIAGTGAGITLTDPVTGVALVRVSSEGLDLARAFSFAREDGGAALRAL 60 MTELL N AG+W GTG G L DPV G ALVRV + GLDLA AF+FAR+ GGAALRA Sbjct: 1 MTELLPNFAAGRWQHGTGPGTALWDPVLGTALVRVDAAGLDLAEAFAFARDMGGAALRAA 60 Query: 61 TYAQRAARLADIVKLLQAKRGDYYAIATANSGTTRNDSAVDIDGGIFTLSYYAKLGASLG 120 TY +RAA LA +VK+LQ R YY IATAN+GT +NDSAVDIDG IFTL YA+ G +LG Sbjct: 61 TYRERAAMLAAVVKVLQTHRDSYYDIATANAGTVKNDSAVDIDGAIFTLGQYARWGDALG 120 Query: 121 EVHALRDGSAESLSKDRSFSAQHVLSPTRGVALFINAFNFPSWGLWEKAAPALLSGVPVI 180 +V ALRDG A L K+ F +QH+ P +GVALFINAFNFP+WGLWEKAAPALLSG+PVI Sbjct: 121 DVRALRDGGAVKLGKEPVFLSQHLQVPRQGVALFINAFNFPAWGLWEKAAPALLSGMPVI 180 Query: 181 VKPATATAWLTQRMVADVVDAGILPPGALSIICGSSAGLLDQIRSFDVVSFTGSADTAAT 240 VKPATATAWLTQRMV DVVDAG+LP GALS+I GSSAGL+DQ++ FDVVSFTGSA+TA Sbjct: 181 VKPATATAWLTQRMVQDVVDAGVLPVGALSVIAGSSAGLMDQLQPFDVVSFTGSAETAGV 240 Query: 241 LRAHPAFVQRGARLNVEADSLNSAILCADATPDTPAFDLFIKEVVREMTVKSGQKCTAIR 300 +RAH A QR R N+EADSLNSA+L P + AF+L ++EVVREMTVKSGQKCTAIR Sbjct: 241 IRAHAAVAQRSVRANIEADSLNSALLLPGEAPGSEAFNLLVREVVREMTVKSGQKCTAIR 300 Query: 301 RAFVPEAALEPVLEALKAKLAKITVGNPRNDAVRMGSLVSREQYENVLAGIAALREEAVL 360 R VP + EA+ AKLA ITVGNPRND VRMGSLVSR Q +V G+ L+ A + Sbjct: 301 RILVPADVYDAAAEAIGAKLAGITVGNPRNDGVRMGSLVSRAQLASVREGLVTLQAHATV 360 Query: 361 AYDSSAVPLIDADANIAACVAPHLFVVNDPDNATLLHDVEVFGPVASVAPYRVTTDTNAL 420 +D PL+DAD +AAC+ P L D D A +HDVEVFGPVA++ PYR Sbjct: 361 LHDGRHQPLVDADPAVAACMGPVLLGARDADAAQPVHDVEVFGPVATLLPYR-------- 412 Query: 421 PEAHAVALARRGQGSLVASIYSNDDAHLGRLALELADSHGRVHAISPSVQHSQTGHGNVM 480 AHA+ALA+RGQGSLV S+Y +D+A L AL +A SHGRVH ++P V + +GHGNVM Sbjct: 413 DSAHAIALAQRGQGSLVTSLYGSDEAALAHTALAVAASHGRVHVVTPDVAQTHSGHGNVM 472 Query: 481 PMSLHGGPGRAGGGEELGGLRALAFYHRRSAIQAASAAIGTL 522 PMS HGGPGRAGGG ELGGLRAL FYH+RSA+QA+ A + L Sbjct: 473 PMSQHGGPGRAGGGAELGGLRALDFYHQRSAVQASPAVLAAL 514 Lambda K H 0.318 0.132 0.379 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 789 Number of extensions: 30 Number of successful extensions: 2 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 531 Length of database: 520 Length adjustment: 35 Effective length of query: 496 Effective length of database: 485 Effective search space: 240560 Effective search space used: 240560 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory