Align phenylacetaldehyde dehydrogenase monomer (EC 1.2.1.39) (characterized)
to candidate Ac3H11_1496 Aldehyde dehydrogenase (EC 1.2.1.3)
Query= metacyc::MONOMER-15732 (497 letters) >FitnessBrowser__acidovorax_3H11:Ac3H11_1496 Length = 500 Score = 513 bits (1320), Expect = e-150 Identities = 257/487 (52%), Positives = 338/487 (69%), Gaps = 2/487 (0%) Query: 8 LPATRAFLERKLKMRIGADWQDAASGRTLSFRNPATGEVLGEVPAADAEDVDRAVRAARQ 67 L + ER++ IG A SGR L +PAT V+ E P +DA D+ RAV +A++ Sbjct: 11 LQGAKFLSERRVGNVIGGVSGPALSGRWLPVTDPATEMVVAEAPDSDAADIARAVASAQR 70 Query: 68 AFDDSPWSRLRPRERQNLLWRLADLMERDARQLAELECLNNGKSAAVAQVMDVQLAIDFL 127 AFD W LRP +R+ LL+RL++L+ER A +L+ LE L +GK +A+ +DVQ +F+ Sbjct: 71 AFDSHVWRGLRPADREKLLFRLSELIERHADELSALETLQSGKLQGIARAIDVQAGAEFV 130 Query: 128 RYMAGWATKIEGSTVEASMPLMPNDQFHGFVRREAIGVVGAIVAWNFPLLLACWKLGPAL 187 RYMAGWATK+EG T++ S+P+ P Q+ + RRE +GVVGAIV WNFPL +A WK+ PAL Sbjct: 131 RYMAGWATKLEGQTLDNSIPI-PGPQWVTYTRREPVGVVGAIVPWNFPLAIALWKIAPAL 189 Query: 188 ATGCTIVLKPADETPLSVLKLAELVDEAGYPAGVFNVVTGTGLNAGAALSRHPGVDKLTF 247 A GCT+VLKP+++TPL+ L+LA L EAG P GV NVV G G AGAAL HPGV KL+F Sbjct: 190 AAGCTVVLKPSEDTPLTALRLAHLALEAGIPEGVLNVVCGRGATAGAALIAHPGVRKLSF 249 Query: 248 TGSTEVGKLIGKAAMDNMTRVTLELGGKSPTIVMPDANLQEAAAGAATAIFFNQGQVCCA 307 TGST VGK++G AA++NM R TLELGGKSP +VM DA+ + A G AT IFF+QGQVC A Sbjct: 250 TGSTAVGKVVGHAAVENMARFTLELGGKSPAVVMEDADPSQVAQGIATGIFFHQGQVCTA 309 Query: 308 GSRLYVHRKHFDNVVADIAGIANGMKLGNGLDPAVQMGPLISAKQQDRVTGYIELGRELG 367 SRL VHR + V+ ++AGIA GM++G+G D A Q GPL S RV +I + G Sbjct: 310 SSRLLVHRSLYRRVLDELAGIAQGMRIGSGFDAATQFGPLTSKAHFARVMDFIASAKAEG 369 Query: 368 ATVACGGEG-FGPGYFVKPTVIVDVDQRHRLVQEEIFGPVLVAMPFDDLDEVIGMANDNP 426 AT+ GGE G FV+PT+ D + R+V+EE+FGPVL PFDD+++ I AND P Sbjct: 370 ATLVAGGERVHDAGCFVQPTIFADTTAQMRVVREEVFGPVLAVAPFDDVEDAIAAANDTP 429 Query: 427 YGLGASIWSNDLAAVHRMIPRIKSGSVWVNCHSALDPALPFGGYKMSGVGREVGAAAIEH 486 YGL AS+W+ L+ HR++PR+++G VWVN H+ LD LP GG K SG GR++G AA+E Sbjct: 430 YGLAASLWTQSLSHAHRIVPRLQAGVVWVNAHNVLDAGLPLGGIKQSGTGRDLGRAAVEG 489 Query: 487 YTELKSV 493 +TELKSV Sbjct: 490 FTELKSV 496 Lambda K H 0.320 0.137 0.413 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 656 Number of extensions: 29 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 497 Length of database: 500 Length adjustment: 34 Effective length of query: 463 Effective length of database: 466 Effective search space: 215758 Effective search space used: 215758 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory