Align Glutarate-semialdehyde dehydrogenase (EC 1.2.1.20) (characterized)
to candidate Ac3H11_255 2-ketoglutaric semialdehyde dehydrogenase (EC 1.2.1.26)
Query= reanno::pseudo13_GW456_L13:PfGW456L13_495 (480 letters) >FitnessBrowser__acidovorax_3H11:Ac3H11_255 Length = 478 Score = 371 bits (952), Expect = e-107 Identities = 194/469 (41%), Positives = 280/469 (59%), Gaps = 2/469 (0%) Query: 12 QAFIDGAWVDADNGQTIKVNNPATGEILGTVPKMGAAETRRAIEAADKALPAWRALTAKE 71 Q FI G W DA G+T+ V NPATG+ +G V + RA++AA K AWR + A E Sbjct: 7 QLFIAGQWQDAVEGKTLAVFNPATGKEIGRVAHATKVDLDRALDAAQKGFEAWRDIPAAE 66 Query: 72 RATKLRRWYELIIENQDDLARLMTLEQGKPLAEAKGEIVYAASFIEWFAEEAKRIYGDVI 131 RA +RR L+ E + +A +M EQGKPLAEAK E + +A IEWFA+E+ R+YG ++ Sbjct: 67 RAKTMRRAAALMRERAEAIAAIMVQEQGKPLAEAKVETMASADIIEWFADESLRVYGRIV 126 Query: 132 PGHQPDKRLIVIKQPIGVTAAITPWNFPAAMITRKAGPALAAGCTMVLKPASQTPFSAFA 191 P + +V+K P+G AA TPWNFP + RK ALAAGC++++K +TP S Sbjct: 127 PSRNLKAQQMVLKDPVGPVAAFTPWNFPINQVVRKLAAALAAGCSILVKAPEETPASPAE 186 Query: 192 LAELAQRAGIPAGVFSVVSGSAGDIGSELTSNPIVRKLSFTGSTEIGRQLMSECAKDIKK 251 L AG+P G +V G +I S L +PI+RK++FTGST +G+QL + K +K+ Sbjct: 187 LIRAFADAGVPVGTVGLVYGDPAEISSYLIPHPIIRKVTFTGSTPVGKQLAALAGKHMKR 246 Query: 252 VSLELGGNAPFIVFDDADLDKAVEGAIISKYRNNGQTCVCANRLYIQDGVYDAFAEKLKV 311 V++ELGG+AP IV +DADL+ A++ + +K+RN GQ C+ R + + + F Sbjct: 247 VTMELGGHAPVIVAEDADLELAIKISSGAKFRNAGQVCISPTRYLVHENIRADFVAGFAK 306 Query: 312 AVAKLKIGNGLEAGTTTGPLIDEKAVAKVQEHIADALSKGATVLAGGKPM--EGNFFEPT 369 LK+G+GL AGT GPL + + + + + +ADA+ +GA VLAGG+ + EGNFF PT Sbjct: 307 YAQGLKVGDGLTAGTQMGPLANPRRITAMADLLADAVQQGAKVLAGGERIGSEGNFFAPT 366 Query: 370 ILTNVPNNAAVAKEETFGPLAPLFRFKDEADVIAMSNDTEFGLASYFYARDLGRVFRVAE 429 +L +VP +A + EE FGP+A + F D IA +N FGLA Y + L +A+ Sbjct: 367 VLNDVPLSARIVNEEPFGPVAAVRGFTKIEDAIAEANRLPFGLAGYAFTTSLKNAHLLAQ 426 Query: 430 ALEYGMVGVNTGLISNEVAPFGGIKASGLGREGSKYGIEDYLEIKYLCL 478 LE GM+ +N PFGG+K SG G EG IE ++ + + + Sbjct: 427 RLEVGMLWINQAAAPAAELPFGGLKDSGYGSEGGPEAIEAHMNTRLVSI 475 Lambda K H 0.317 0.135 0.390 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 601 Number of extensions: 27 Number of successful extensions: 2 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 480 Length of database: 478 Length adjustment: 34 Effective length of query: 446 Effective length of database: 444 Effective search space: 198024 Effective search space used: 198024 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory