Align Glutarate-semialdehyde dehydrogenase (EC 1.2.1.20) (characterized)
to candidate Ac3H11_4184 Aldehyde dehydrogenase B (EC 1.2.1.22)
Query= reanno::pseudo13_GW456_L13:PfGW456L13_495 (480 letters) >FitnessBrowser__acidovorax_3H11:Ac3H11_4184 Length = 498 Score = 578 bits (1490), Expect = e-169 Identities = 285/484 (58%), Positives = 356/484 (73%), Gaps = 9/484 (1%) Query: 3 LKDTQLFRQQAFIDGAWVDADNGQTIKVNNPATGEILGTVPKMGAAETRRAIEAADKALP 62 L D L + I+G WV + VN+PATG L V +G A+ AI AA+ A Sbjct: 11 LNDPTLLKTDGLINGQWVVGSS--RFDVNDPATGLKLADVANLGPADAEAAIAAANAAWG 68 Query: 63 AWRALTAKERATKLRRWYELIIENQDDLARLMTLEQGKPLAEAKGEIVYAASFIEWFAEE 122 W+ TAKER+ LR+W++L++ NQDDL R+MT EQGKPLAEAKGE+ Y ASF+EWFAEE Sbjct: 69 PWKTKTAKERSIILRKWFDLLMANQDDLGRIMTAEQGKPLAEAKGEVAYGASFVEWFAEE 128 Query: 123 AKRIYGDVIPGHQPDKRLIVIKQPIGVTAAITPWNFPAAMITRKAGPALAAGCTMVLKPA 182 AKRI G+ +P ++RL+V+KQPIGV AAITPWNFP AMITRK PALAAGC +V+KPA Sbjct: 129 AKRINGETLPQFDNNRRLMVLKQPIGVCAAITPWNFPLAMITRKVAPALAAGCPVVIKPA 188 Query: 183 SQTPFSAFALAELAQRAGIPAGVFSVVSGSAGD---IGSELTSNPIVRKLSFTGSTEIGR 239 TP +A A AELA RAGIPAGVF+++ + + IG L ++ +VR +SFTGSTE+GR Sbjct: 189 ELTPLTALAAAELAIRAGIPAGVFNILPADSDNSIAIGKVLCASDVVRHISFTGSTEVGR 248 Query: 240 QLMSECAKDIKKVSLELGGNAPFIVFDDADLDKAVEGAIISKYRNNGQTCVCANRLYIQD 299 LM++ A +KK+SLELGGNAPFIVFDDAD+D AVEGA SKYRN GQTCVC NR Y+Q+ Sbjct: 249 ILMAQSAPTVKKMSLELGGNAPFIVFDDADIDSAVEGAFASKYRNAGQTCVCTNRFYVQE 308 Query: 300 GVYDAFAEKLKVAVAKLKIGNGLEAGTTTGPLIDEKAVAKVQEHIADALSKGATVLAGGK 359 GVYD F K V K+GNG EAG GPLI+E A+ KVQ H+ DAL+KG V+AGG+ Sbjct: 309 GVYDEFVAKFAAKVKTAKVGNGFEAGVNQGPLIEEAALTKVQRHVDDALAKGGQVVAGGQ 368 Query: 360 PM----EGNFFEPTILTNVPNNAAVAKEETFGPLAPLFRFKDEADVIAMSNDTEFGLASY 415 + G FFEPT++ N + A+EETFGP AP+F+FK E + I +N+TEFGLASY Sbjct: 369 RLTALGSGQFFEPTVVANATADMLCAREETFGPFAPVFKFKTEQEAIDAANNTEFGLASY 428 Query: 416 FYARDLGRVFRVAEALEYGMVGVNTGLISNEVAPFGGIKASGLGREGSKYGIEDYLEIKY 475 FY+RD+GR+FRV EALEYGMVG N G+++ E PFGG+K SGLGREGS +G++DY+EIKY Sbjct: 429 FYSRDVGRIFRVTEALEYGMVGANVGILATEHVPFGGVKQSGLGREGSHHGMDDYVEIKY 488 Query: 476 LCLG 479 LCLG Sbjct: 489 LCLG 492 Lambda K H 0.317 0.135 0.390 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 708 Number of extensions: 18 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 480 Length of database: 498 Length adjustment: 34 Effective length of query: 446 Effective length of database: 464 Effective search space: 206944 Effective search space used: 206944 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory