GapMind for catabolism of small carbon sources

 

Alignments for a candidate for acn in Acidovorax sp. GW101-3H11

Align Aconitate hydratase B; ACN; Aconitase; (2R,3S)-2-methylisocitrate dehydratase; (2S,3R)-3-hydroxybutane-1,2,3-tricarboxylate dehydratase; 2-methyl-cis-aconitate hydratase; Iron-responsive protein-like; IRP-like; RNA-binding protein; EC 4.2.1.3; EC 4.2.1.99 (characterized)
to candidate Ac3H11_3150 Aconitate hydratase 2 (EC 4.2.1.3) @ 2-methylisocitrate dehydratase (EC 4.2.1.99)

Query= SwissProt::Q8ZRS8
         (865 letters)



>FitnessBrowser__acidovorax_3H11:Ac3H11_3150
          Length = 866

 Score = 1242 bits (3214), Expect = 0.0
 Identities = 628/863 (72%), Positives = 711/863 (82%), Gaps = 8/863 (0%)

Query: 1   MLEEYRKHVAERAAQGIVPKPLDATQMAALVELLKTPPVGEEEFLLDLLINRVPPGVDEA 60
           ML+ YR HVAERAA GI P PLDA Q+A L+EL+K PP GE+ FLLDLL +RVPPGVD+A
Sbjct: 1   MLKAYRDHVAERAALGIPPLPLDAKQVAELIELIKNPPAGEDAFLLDLLTHRVPPGVDDA 60

Query: 61  AYVKAGFLAAVAKGDTTSPLVSPEKAIELLGTMQGGYNIHPLIDALDDAKLAPIAAKALS 120
           A VKA FLAAVA GD    L+S  KA ELLGTM GGYN+HPLI+ LDDA++A +AA AL 
Sbjct: 61  AKVKASFLAAVAHGDVKVGLISKSKATELLGTMVGGYNVHPLIELLDDAEVAGVAADALK 120

Query: 121 HTLLMFDNFYDVEEKAKAGNEYAKQVMQSWADAEWFLSRPPLAEKITVTVFKVTGETNTD 180
            TLLMFD F DV  KAKAGN  A++VMQSWA+AEWF SRP + +KITVTVFKV GETNTD
Sbjct: 121 KTLLMFDFFNDVATKAKAGNAKAQEVMQSWANAEWFTSRPEVEKKITVTVFKVPGETNTD 180

Query: 181 DLSPAPDAWSRPDIPLHAQAMLKNARE--GIEPDQPGVVGPIKQIEALQKKGYPLAYVGD 238
           DLSPAPDAWSRPDIPLH  AMLKN R     +P++ G  GP++ I+ L+KKG+ +AYVGD
Sbjct: 181 DLSPAPDAWSRPDIPLHYLAMLKNTRPDAAFKPEEDGKRGPMQFIDDLKKKGHLVAYVGD 240

Query: 239 VVGTGSSRKSATNSVLWFMGDDIPNVPNKRGGGLCLGGKIAPIFFNTMEDAGALPIEVDV 298
           VVGTGSSRKSATNS++W  G DIP VPNKR GG+ LGGKIAPIFFNT ED+G+LPIEVDV
Sbjct: 241 VVGTGSSRKSATNSIVWATGQDIPFVPNKRFGGVTLGGKIAPIFFNTQEDSGSLPIEVDV 300

Query: 299 SNLNMGDVIDVYPYKGEVRNHETGELLATFELKTDVLIDEVRAGGRIPLIIGRGLTTKAR 358
           S L MGDVIDV PY G++   + G  +A F+LK+DVL DEVRAGGRI LIIGR LT KAR
Sbjct: 301 SKLEMGDVIDVLPYDGKIV--KDGATVAEFQLKSDVLFDEVRAGGRINLIIGRSLTAKAR 358

Query: 359 EALGLPHSDVFRQAKDVAESSRGFSLAQKMVGRACGV---KGIRPGAYCEPKMTSVGSQD 415
           E LGLP S  FR       ++ GF+LAQKMVGRA G+   +G+RPG YCEPKMT+VGSQD
Sbjct: 359 EFLGLPASTAFRLPTAPVATNAGFTLAQKMVGRAVGLPEGQGVRPGTYCEPKMTTVGSQD 418

Query: 416 TTGPMTRDELKDLACLGFSADLVMQSFCHTAAYPKPVDVTTHHTLPDFIMNRGGVSLRPG 475
           TTGPMTRDELKDLACLGFSADLVMQSFCHTAAYPKPVDV TH  LP FI NRGGV+LRPG
Sbjct: 419 TTGPMTRDELKDLACLGFSADLVMQSFCHTAAYPKPVDVKTHRELPAFISNRGGVALRPG 478

Query: 476 DGVIHSWLNRMLLPDTVGTGGDSHTRFPIGISFPAGSGLVAFAAATGVMPLDMPESVLVR 535
           DGVIHSWLNR+LLPDTVGTGGDSHTRFPIGISFPAGSGLVAF AATGVMPLDMPES+LVR
Sbjct: 479 DGVIHSWLNRLLLPDTVGTGGDSHTRFPIGISFPAGSGLVAFGAATGVMPLDMPESILVR 538

Query: 536 FKGKMQPGITLRDLVHAIPLYAIKQGLLTVEKKGKKNIFSGRILEIEGLPDLKVEQAFEL 595
           FKG MQPG+TLRDLVHAIPLYAIK GLLTV K GK N FSGRILEIEGLPDLKVEQAFEL
Sbjct: 539 FKGDMQPGVTLRDLVHAIPLYAIKAGLLTVAKAGKINAFSGRILEIEGLPDLKVEQAFEL 598

Query: 596 TDASAERSAAGCTIKLNKEPIVEYLTSNIVLLKWMIAEGYGDRRTLERRIQGMEKWLADP 655
           +DASAERSAAGCTIKLN EPI EYLTSNIVL+K MIA+GY D +TL+RRI+ +E WLA P
Sbjct: 599 SDASAERSAAGCTIKLNPEPIKEYLTSNIVLMKNMIADGYADAKTLQRRIEKVEAWLAKP 658

Query: 656 QLLEADADAEYAAVIDIDLADIKEPILCAPNDPDDARLLSDVQGEKIDEVFIGSCMTNIG 715
            LLEAD DAEYAAVI+IDLADIKEPI+C PNDPDDA+ LS+V G KIDE FIGSCMTNIG
Sbjct: 659 DLLEADKDAEYAAVIEIDLADIKEPIVCCPNDPDDAKFLSEVSGTKIDEAFIGSCMTNIG 718

Query: 716 HFRAAGKLLDNHKGQLPTRLWVAPPTRMDAAQLTEEGYYSVFGKSGARIEIPGCSLCMGN 775
           HFRAA KLL   +  +P +LWVAPPT+MD ++L +EG+Y+ FG +GAR E+PGCSLCMGN
Sbjct: 719 HFRAAAKLLGGQR-DIPVKLWVAPPTKMDESELIKEGHYAAFGTAGARTEMPGCSLCMGN 777

Query: 776 QARVADGATVVSTSTRNFPNRLGTGANVFLASAELAAVAALIGKLPTPEEYQTYVAQVDK 835
           QA+V +GATV+STSTRNFPNRLG   NVFL SAELAA+A+ +G LP+ EEY   +  +D 
Sbjct: 778 QAQVREGATVISTSTRNFPNRLGKNTNVFLGSAELAAIASRLGYLPSKEEYLKEMGVIDA 837

Query: 836 TAVDTYRYLNFDQLSQYTEKADG 858
                YRY+NFDQ+ +Y E A G
Sbjct: 838 DKASVYRYMNFDQIEEYAEAAKG 860


Lambda     K      H
   0.317    0.136    0.400 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 2070
Number of extensions: 76
Number of successful extensions: 5
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 865
Length of database: 866
Length adjustment: 42
Effective length of query: 823
Effective length of database: 824
Effective search space:   678152
Effective search space used:   678152
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.7 bits)
S2: 56 (26.2 bits)

This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory