Align propionyl-CoA carboxylase α subunit (EC 6.4.1.3) (characterized)
to candidate Ac3H11_3010 Methylcrotonyl-CoA carboxylase carboxyl transferase subunit (EC 6.4.1.4)
Query= metacyc::MONOMER-17283 (535 letters) >FitnessBrowser__acidovorax_3H11:Ac3H11_3010 Length = 535 Score = 729 bits (1883), Expect = 0.0 Identities = 353/535 (65%), Positives = 425/535 (79%) Query: 1 MSIIHSHIQPNSPDFQANFAYHQSLAADLRERLAQIRQGGGAEQRRRHEERGKLFVRDRI 60 M+I+ + + S DFQ N A ++L DLR + +I QGGG R +H RGKL R+R+ Sbjct: 1 MTILDTQLNARSADFQTNAAAMRALVQDLRAQQDKIAQGGGEAARAKHTARGKLLPRERV 60 Query: 61 DTLIDPDSSFLEIGALAAYNVYDEEVPAAGIVCGIGRVAGRPVMIIANDATVKGGTYFPL 120 L+DP + FLE+ LAA N+Y+ + P AG++ GIGRV+G MI+ NDATVKGGTY+P+ Sbjct: 61 ANLLDPGTPFLELAPLAALNMYNNDAPGAGLIAGIGRVSGVDCMIVCNDATVKGGTYYPM 120 Query: 121 TVKKHLRAQEIARENRLPCIYLVDSGGAYLPLQSEVFPDRDHFGRIFYNQAQMSAEGIPQ 180 TVKKHLRAQE+A +NRLPCIYLVDSGGA LP Q +VFPDRDHFGRIF+NQA MSA+GI Q Sbjct: 121 TVKKHLRAQEVAAQNRLPCIYLVDSGGANLPNQDDVFPDRDHFGRIFFNQANMSAQGIAQ 180 Query: 181 IACVMGSCTAGGAYVPAMSDEVVIVKGNGTIFLGGPPLVKAATGEEVTAEELGGADVHTR 240 IA VMGSCTAGGAYVPAMSDE +IVK GTIFLGGPPLVKAATGE V+AE+LGG DVHTR Sbjct: 181 IAVVMGSCTAGGAYVPAMSDESIIVKNQGTIFLGGPPLVKAATGEVVSAEDLGGGDVHTR 240 Query: 241 ISGVADYFANDDREALAIVRDIVAHLGPRQRANWELRDPEPPRYDPREIYGILPRDFRQS 300 +SGVAD+ A +D AL + R V +L + + P P++ E+YG++P D R+ Sbjct: 241 LSGVADHLAQNDLHALQLARTAVHNLNKNKAPAPADQAPIAPKFVAEELYGVIPVDTRKP 300 Query: 301 YDVREVIARIVDGSRLHEFKTRYGTTLVCGFAHIEGFPVGILANNGILFSESALKGAHFI 360 +DVRE+IAR+VDGS EFK R+G+TLVCGFA IEG PVGI+ANNGILFSESA KGAHFI Sbjct: 301 FDVREIIARVVDGSEFDEFKARFGSTLVCGFARIEGMPVGIIANNGILFSESAQKGAHFI 360 Query: 361 ELCCARNIPLVFLQNITGFMVGKQYENGGIAKDGAKLVTAVSCANVPKFTVIIGGSFGAG 420 ELCC R IPLVFLQNITGFMVG++YEN GIA+ GAKLVTAV+ A+VPKFT+IIGGSFGAG Sbjct: 361 ELCCQRKIPLVFLQNITGFMVGRKYENEGIARHGAKLVTAVATASVPKFTIIIGGSFGAG 420 Query: 421 NYGMCGRAYQPRQLWMWPNARISVMGGTQAANVLLTIRRDNLRARGQDMTPEEQERFMAP 480 NYGMCGRAY PR LWMWPNARISVMGG QAA+VL T++RD + A+G + EE+E F AP Sbjct: 421 NYGMCGRAYSPRFLWMWPNARISVMGGEQAASVLATVKRDGIEAKGGQWSMEEEEAFKAP 480 Query: 481 ILAKYEQEGHPYYASARLWDDGVIDPVETRRVLALGLAAAAEAPVQPTRFGVFRM 535 I +YE +GHPYYA+ARLWDDGVIDP +TRRVLALGL+A AP++ T+FG+FRM Sbjct: 481 IRRQYEDQGHPYYATARLWDDGVIDPADTRRVLALGLSATRNAPIEDTKFGIFRM 535 Lambda K H 0.322 0.139 0.423 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 966 Number of extensions: 49 Number of successful extensions: 2 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 535 Length of database: 535 Length adjustment: 35 Effective length of query: 500 Effective length of database: 500 Effective search space: 250000 Effective search space used: 250000 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.9 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory