Align succinate-semialdehyde dehydrogenase (NADP+) [EC: 1.2.1.16] (characterized)
to candidate Ac3H11_4184 Aldehyde dehydrogenase B (EC 1.2.1.22)
Query= reanno::MR1:200453 (482 letters) >FitnessBrowser__acidovorax_3H11:Ac3H11_4184 Length = 498 Score = 591 bits (1523), Expect = e-173 Identities = 299/484 (61%), Positives = 365/484 (75%), Gaps = 7/484 (1%) Query: 2 LLNDPSLLRQQCYINGQWCDANSKETVAITNPATGAVIACVPVMGQAETQAAIAAAEAAL 61 LLNDP+LL+ INGQW +S+ V +PATG +A V +G A+ +AAIAAA AA Sbjct: 10 LLNDPTLLKTDGLINGQWVVGSSRFDV--NDPATGLKLADVANLGPADAEAAIAAANAAW 67 Query: 62 PAWRALTAKERGAKLRRWFELLNENSDDLALLMTSEQGKPLTEAKGEVTYAASFIEWFAE 121 W+ TAKER LR+WF+LL N DDL +MT+EQGKPL EAKGEV Y ASF+EWFAE Sbjct: 68 GPWKTKTAKERSIILRKWFDLLMANQDDLGRIMTAEQGKPLAEAKGEVAYGASFVEWFAE 127 Query: 122 EAKRIYGDTIPGHQGDKRIMVIKQPVGVTAAITPWNFPAAMITRKAAPALAAGCTMVVKP 181 EAKRI G+T+P ++R+MV+KQP+GV AAITPWNFP AMITRK APALAAGC +V+KP Sbjct: 128 EAKRINGETLPQFDNNRRLMVLKQPIGVCAAITPWNFPLAMITRKVAPALAAGCPVVIKP 187 Query: 182 APQTPFTALALAVLAERAGIPAGVFSVITGD---AIAIGNEMCTNPIVRKLSFTGSTNVG 238 A TP TALA A LA RAGIPAGVF+++ D +IAIG +C + +VR +SFTGST VG Sbjct: 188 AELTPLTALAAAELAIRAGIPAGVFNILPADSDNSIAIGKVLCASDVVRHISFTGSTEVG 247 Query: 239 IKLMAQCAPTLKKLSLELGGNAPFIVFDDANIDAAVEGAMIAKYRNAGQTCVCANRIYVQ 298 LMAQ APT+KK+SLELGGNAPFIVFDDA+ID+AVEGA +KYRNAGQTCVC NR YVQ Sbjct: 248 RILMAQSAPTVKKMSLELGGNAPFIVFDDADIDSAVEGAFASKYRNAGQTCVCTNRFYVQ 307 Query: 299 AGVYDEFAEKLSMAVAKLKVGEGIIAGVTTGPLINAAAVEKVQSHLEDAIKKGATVLAGG 358 GVYDEF K + V KVG G AGV GPLI AA+ KVQ H++DA+ KG V+AGG Sbjct: 308 EGVYDEFVAKFAAKVKTAKVGNGFEAGVNQGPLIEEAALTKVQRHVDDALAKGGQVVAGG 367 Query: 359 -KVHELG-GNFFEPTVLTNADKSMRVAREETFGPLAPLFKFNDVDDVIKQANDTEFGLAA 416 ++ LG G FFEPTV+ NA M AREETFGP AP+FKF + I AN+TEFGLA+ Sbjct: 368 QRLTALGSGQFFEPTVVANATADMLCAREETFGPFAPVFKFKTEQEAIDAANNTEFGLAS 427 Query: 417 YFYGRDISLVWKVAESLEYGMVGVNTGLISTEVAPFGGMKSSGLGREGSKYGIEEYLEIK 476 YFY RD+ +++V E+LEYGMVG N G+++TE PFGG+K SGLGREGS +G+++Y+EIK Sbjct: 428 YFYSRDVGRIFRVTEALEYGMVGANVGILATEHVPFGGVKQSGLGREGSHHGMDDYVEIK 487 Query: 477 YICM 480 Y+C+ Sbjct: 488 YLCL 491 Lambda K H 0.318 0.133 0.390 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 718 Number of extensions: 20 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 482 Length of database: 498 Length adjustment: 34 Effective length of query: 448 Effective length of database: 464 Effective search space: 207872 Effective search space used: 207872 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory