Align NAD(P)+ L-lactaldehyde dehydrogenase (EC 1.2.1.22) (characterized)
to candidate Ac3H11_1496 Aldehyde dehydrogenase (EC 1.2.1.3)
Query= metacyc::MONOMER-16244 (495 letters) >FitnessBrowser__acidovorax_3H11:Ac3H11_1496 Length = 500 Score = 384 bits (987), Expect = e-111 Identities = 200/479 (41%), Positives = 292/479 (60%), Gaps = 8/479 (1%) Query: 18 EQPTGLFINNEFVQSKSKKTFGTVSPSTEEEITQVYEAFSEDIDDAVEAATAAFHSS-WS 76 E+ G I + S + P+TE + + ++ + DI AV +A AF S W Sbjct: 19 ERRVGNVIGGVSGPALSGRWLPVTDPATEMVVAEAPDSDAADIARAVASAQRAFDSHVWR 78 Query: 77 TSDPQVRMKVLYKLADLIDEHADTLAHIEALDNGKSLMCSKG-DVALTAAYFRSCAGWTD 135 P R K+L++L++LI+ HAD L+ +E L +GK ++ DV A + R AGW Sbjct: 79 GLRPADREKLLFRLSELIERHADELSALETLQSGKLQGIARAIDVQAGAEFVRYMAGWAT 138 Query: 136 KIKGSVIET-----GDTHFNYTRREPIGVCGQIIPWNFPLLMASWKLGPVLCTGCTTVLK 190 K++G ++ G YTRREP+GV G I+PWNFPL +A WK+ P L GCT VLK Sbjct: 139 KLEGQTLDNSIPIPGPQWVTYTRREPVGVVGAIVPWNFPLAIALWKIAPALAAGCTVVLK 198 Query: 191 TAESTPLSALYLASLIKEAGAPPGVVNVVSGFGPTAGAPISSHPKIKKVAFTGSTATGRH 250 +E TPL+AL LA L EAG P GV+NVV G G TAGA + +HP ++K++FTGSTA G+ Sbjct: 199 PSEDTPLTALRLAHLALEAGIPEGVLNVVCGRGATAGAALIAHPGVRKLSFTGSTAVGKV 258 Query: 251 IMKAAAESNLKKVTLELGGKSPNIVFDDADVKSTIQHLVTGIFYNTGEVCCAGSRIYVQE 310 + AA E N+ + TLELGGKSP +V +DAD Q + TGIF++ G+VC A SR+ V Sbjct: 259 VGHAAVE-NMARFTLELGGKSPAVVMEDADPSQVAQGIATGIFFHQGQVCTASSRLLVHR 317 Query: 311 GIYDKIVSEFKNAAESLKIGDPFKEDTFMGAQTSQLQLDKILKYIDIGKKEGATVITGGE 370 +Y +++ E A+ ++IG F T G TS+ +++ +I K EGAT++ GGE Sbjct: 318 SLYRRVLDELAGIAQGMRIGSGFDAATQFGPLTSKAHFARVMDFIASAKAEGATLVAGGE 377 Query: 371 RFGNKGYFIKPTIFGDVKEDHQIVRDEIFGPVVTITKFKTVEEVIALANDSEYGLAAGVH 430 R + G F++PTIF D ++VR+E+FGPV+ + F VE+ IA AND+ YGLAA + Sbjct: 378 RVHDAGCFVQPTIFADTTAQMRVVREEVFGPVLAVAPFDDVEDAIAAANDTPYGLAASLW 437 Query: 431 TTNLSTAISVSNKINSGTIWVNTYNDFHPMVPFGGYSQSGIGREMGEEALDNYTQVKAV 489 T +LS A + ++ +G +WVN +N +P GG QSG GR++G A++ +T++K+V Sbjct: 438 TQSLSHAHRIVPRLQAGVVWVNAHNVLDAGLPLGGIKQSGTGRDLGRAAVEGFTELKSV 496 Lambda K H 0.316 0.133 0.389 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 527 Number of extensions: 18 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 495 Length of database: 500 Length adjustment: 34 Effective length of query: 461 Effective length of database: 466 Effective search space: 214826 Effective search space used: 214826 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.6 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory