Align ribose transport, ATP-binding protein RbsA; EC 3.6.3.17 (characterized)
to candidate Ac3H11_2431 ABC transporter ATP-binding protein
Query= CharProtDB::CH_003578 (501 letters) >lcl|FitnessBrowser__acidovorax_3H11:Ac3H11_2431 ABC transporter ATP-binding protein Length = 514 Score = 257 bits (657), Expect = 6e-73 Identities = 175/520 (33%), Positives = 270/520 (51%), Gaps = 36/520 (6%) Query: 1 MEALLQLKGIDKAFPGVKALSGAALNVYPGRVMALVGENGAGKSTMMKVLTGIYTRDAGT 60 M +L+L I K F + A +L + G V+AL+GENGAGKST+M +L G Y D G+ Sbjct: 1 MSNVLRLSHITKRFGKLVANDSISLTLARGEVLALLGENGAGKSTLMSILFGHYVADEGS 60 Query: 61 LLWLGKETTFTGPKSSQEAGIGIIHQELNLIPQLTIAENIFLGREFVNRFGKIDWKTMYA 120 + G+ P+++ AGIG++HQ L LT+ +N+ LG E + W+ Sbjct: 61 IEVFGQPLPPGQPRAALAAGIGMVHQHFTLADNLTVLDNVLLGSEPL-------WQPFSR 113 Query: 121 EAD---KLLA---KLNLRFKSDKLVGDLSIGDQQMVEIAKVLSFESKVIIMDEPTDALTD 174 ++ KLLA + L D VG LS+G++Q VEI K L + ++I+DEPT LT Sbjct: 114 RSEARAKLLAVSQQFGLPVSPDAKVGSLSVGERQRVEILKALYRGAHILILDEPTAVLTP 173 Query: 175 TETESLFRVIRELKSQGRGIVYISHRMKEIFEICDDVTVFRDGQFIAEREVASLTEDSLI 234 E+E+LF + ++ +QG I++ISH++ E+ + V V R G+ +AE T+ L Sbjct: 174 QESEALFDTLAQMVAQGLSIIFISHKLGEVLRVSHRVAVLRQGKLVAEAPAQGTTQGQLA 233 Query: 235 EMMVGRKLEDQYPHLDKAPGDIRLKVDNL-CGPG----VNDVSFTLRKGEILGVSGLMGA 289 + MVG +E + G+ + N+ P +NDVS TLR GEI+ ++G+ G Sbjct: 234 QWMVGHAIEAAERRPAQNVGEPICTLSNVSTAPAGRDRLNDVSLTLRAGEIVAIAGVSGN 293 Query: 290 GRTELMKVLYGALPRTSGYVTLDGHEVVTRSPQDGLANGIVYISEDRKRDGLVLGMSVKE 349 G+ L VL G T+G VTL G + R P ++ G+ I EDR G+V + V E Sbjct: 294 GQVALADVLCGVRAATTGQVTLRGAPLQAR-PAWLVSQGVARIPEDRHAVGVVGDLPVWE 352 Query: 350 NMSLTALR--YFS----RAGGSLKHADEQQAVSDFIRLFNVKTPSMEQAIGLLSGGNQQK 403 N LR +F+ RA + A Q A F+V+ + LSGGN QK Sbjct: 353 NAVSERLRGPWFAHPWFRAFWVKRRAARQHA-QRVAETFDVRGGGADAPARSLSGGNMQK 411 Query: 404 VAIARGLMTR----------PKVLILDEPTRGVDVGAKKEIYQLINQFKADGLSIILVSS 453 + + R LM P++++ +PT G+D+GA + Q + + G +++L+S Sbjct: 412 LILGRALMPPQDAAGNSAPVPQLIVAHQPTWGLDIGAVMFVQQQLINARDSGAAVLLISD 471 Query: 454 EMPEVLGMSDRIIVMHEGHLSGEFTREQATQEVLMAAAVG 493 ++ EVL + DR+ VMH+G LS E T+E + A G Sbjct: 472 DLDEVLALGDRVAVMHDGRLSEALPAEGWTREAIGLAMAG 511 Lambda K H 0.318 0.137 0.380 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 555 Number of extensions: 23 Number of successful extensions: 9 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 501 Length of database: 514 Length adjustment: 34 Effective length of query: 467 Effective length of database: 480 Effective search space: 224160 Effective search space used: 224160 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory