Align Ribose import ATP-binding protein RbsA 2, component of D-ribose porter (Nanavati et al., 2006). Induced by ribose (characterized)
to candidate Ac3H11_609 L-arabinose transport ATP-binding protein AraG (TC 3.A.1.2.2)
Query= TCDB::Q9X051 (523 letters) >lcl|FitnessBrowser__acidovorax_3H11:Ac3H11_609 L-arabinose transport ATP-binding protein AraG (TC 3.A.1.2.2) Length = 505 Score = 394 bits (1011), Expect = e-114 Identities = 224/512 (43%), Positives = 323/512 (63%), Gaps = 16/512 (3%) Query: 11 VLLEARNITKTFPGVIAVNNVTLQIYKGEVCALVGENGAGKSTLMKILAGVYP--DYEGQ 68 +LLE RNI KTFPGV+A+N V LQ+ GE+ A+VGENGAGKSTLMK+L+GVYP Y GQ Sbjct: 1 MLLEMRNIRKTFPGVVALNQVNLQVQAGEIHAIVGENGAGKSTLMKVLSGVYPHGSYSGQ 60 Query: 69 IFLEGKEVRFRNPREAQENGIALIPQELDLVPNLSSAENIFLSREPVNEFGVIEYQKMFE 128 I +G+E F R+++ GI +I QEL LVP LS AENIFL E GVI++ Sbjct: 61 ILFDGQEREFAGIRDSEHLGIIIIHQELALVPLLSIAENIFLGNETARH-GVIDWMAAHS 119 Query: 129 QASKLFSKLGVNIDPKTKVEDLSTSQQQMVAIAKALSLDAKIIIMDEPTSAIGKRETEQL 188 +A L K+G+ P T V L +QQ+V IAKALS +++I+DEPT+++ + +++ L Sbjct: 120 RAQALLHKVGLGESPDTPVGQLGVGKQQLVEIAKALSRKVRLLILDEPTASLNENDSQAL 179 Query: 189 FNIIRSLKNEGKSVIYISHRLEEIFEIADRVVVMRDGRKVG-----EGPIEEFDHDKLVR 243 +++ LK +G + I ISH+L EI +AD + V+RDG V EGP+ E D++++ Sbjct: 180 LDLLLELKAQGITCILISHKLNEISRVADAITVLRDGSTVQMLDCREGPVSE---DRVIQ 236 Query: 244 LMVGRSIDQFFIKERATITDEIFRVEGIKLWSLDRK-KLLVDDVSFYVRKGEVLGIYGLV 302 MVGR + + + + + + +F V + R + + + VR+GE++GI GL+ Sbjct: 237 AMVGREMSDRYPQRQPQVGEIVFEVRNWRAHHPQRSDREHLKGIDLNVRRGEIVGIAGLM 296 Query: 303 GAGRTELLEAIFGAHPG-RTEGKVFIGGKEIKIHSPRDAVKNGIGLVPEDRKTAGLILQM 361 GAGRTEL +IFG G R G+V + G+ I + + AV +G+ V EDRK GL+L Sbjct: 297 GAGRTELAMSIFGRSWGQRISGEVRLHGQPIDVSTVEKAVSHGLAYVTEDRKGNGLVLNE 356 Query: 362 SVLHNITLPSVVMKLIVRKFGLIDSQLEKEIVRSFIEKLNIKTPSPYQIVENLSGGNQQK 421 + N +L ++ V +IDS E + + + EKL I+ Q NLSGGNQQK Sbjct: 357 DIQFNTSLANLPG---VSFASVIDSGQEHRVAQDYREKLRIRCSGVDQKTLNLSGGNQQK 413 Query: 422 VVLAKWLAIKPKVLLLDEPTRGIDVNAKSEIYKLISEMAVSGMGVVMVSSELPEILAMSD 481 VVL+KWL P+VL+LDEPTRGIDV AK EIY LI+++A G V+++SSE+PE+L ++D Sbjct: 414 VVLSKWLFTSPEVLILDEPTRGIDVGAKYEIYTLIAQLAAEGKCVIVISSEMPELLGITD 473 Query: 482 RILVMSEGRKTAEFLREEVTEEDLLKAAIPRS 513 RI VM+EGR AE E ++E +++A + S Sbjct: 474 RIYVMNEGRFVAEMPTSEASQEKIMRAIVKAS 505 Lambda K H 0.317 0.137 0.372 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 619 Number of extensions: 36 Number of successful extensions: 10 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 523 Length of database: 505 Length adjustment: 35 Effective length of query: 488 Effective length of database: 470 Effective search space: 229360 Effective search space used: 229360 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.6 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory