Align C4-dicarboxylate TRAP transporter large permease protein DctM (characterized)
to candidate Ac3H11_3955 TRAP-type C4-dicarboxylate transport system, large permease component
Query= SwissProt::Q9HU16 (427 letters) >FitnessBrowser__acidovorax_3H11:Ac3H11_3955 Length = 427 Score = 348 bits (893), Expect = e-100 Identities = 188/428 (43%), Positives = 272/428 (63%), Gaps = 3/428 (0%) Query: 1 MTILFLFLLLFLLMFIGVPIAVSLGLSGALTILLFSPDSVRSLAIKLFETSEHYTLLAIP 60 M L L F+LM IGVPIA SLGLS AL L+ + ++ I++ ++LLAIP Sbjct: 1 MDTLVLLGTFFVLMMIGVPIAYSLGLS-ALAGALWIDLPLDAVMIQVASGVNKFSLLAIP 59 Query: 61 FFLLSGAFMTTGGVARRLIDFANACVGHIRGGLAIAAVLACMLFAALSGSSPATVAAVGS 120 FF+L+GA M GG+ARRL+ FA VG IRGGL++ +LA F A+SGSS A A++GS Sbjct: 60 FFVLAGAIMAEGGMARRLVAFAGVLVGFIRGGLSLVNILASTFFGAISGSSVADTASIGS 119 Query: 121 IAIAGMVRSGYPQAFGAGIVCNAGTLGILIPPSIVMVVY--AAATETSVGKLFIAGVVPG 178 + I M + GYP+ F + + ILIPPS V+Y AA S+ LF+AGV+PG Sbjct: 120 VLIPEMEKKGYPRPFATAVTVSGSVQAILIPPSHNAVLYSLAAGGTVSIAALFMAGVLPG 179 Query: 179 LLLGLILMVVIYIVARVKKLPAMPRVSLREWLASARKALWGLLLMVIILGGIYSGAFTPT 238 LL+GL L + A + P + L++ L +ALWGL+ MVIILGGI SG FT Sbjct: 180 LLMGLTLAALCLFTAHREGYPKGEVIPLKQALKICVEALWGLMTMVIILGGILSGVFTAN 239 Query: 239 EAAAVAAVYSAFVALFVYRDMRLSECPKVLLESGKLTIMLMFIIANAMLFAHVLTTEQIP 298 E+A++A V++ FV +F+YRD + + PK++ + K ++M +I A F +++T IP Sbjct: 240 ESASIAVVWAFFVTMFIYRDYKWRDLPKLVHRTVKTVTVVMILIGFAAAFGYLMTMMMIP 299 Query: 299 QSIASWVTELGLSPWMFLLVVNIVLLIAGNFMEPSAIILILAPIFFPIAMELGIDPIHLG 358 + +++T L + ++ L ++NI+LL+ G M+ S +ILIL PI P+ LG+DP+H G Sbjct: 300 MKVTAFLTSLSDNKYVILAMINIMLLLLGCLMDMSPLILILTPILLPVVKMLGVDPVHFG 359 Query: 359 IIMVVNMEIGLITPPVGLNLFVTSAVTGMPLGATIRAALPWLMILLVFLIIVTYIPAVSL 418 +IM+VN+ IGLITPPVG LF +AV +PLG RA +P+ + L V L++VTY+PA+SL Sbjct: 360 MIMMVNLGIGLITPPVGTVLFTGAAVAKLPLGIVTRAMMPFFVALFVVLLMVTYVPAISL 419 Query: 419 ALPNWLGM 426 LP +G+ Sbjct: 420 WLPRAMGL 427 Lambda K H 0.330 0.144 0.425 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 478 Number of extensions: 21 Number of successful extensions: 6 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 427 Length of database: 427 Length adjustment: 32 Effective length of query: 395 Effective length of database: 395 Effective search space: 156025 Effective search space used: 156025 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.1 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 40 (21.9 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory