Align ABC-type sugar transport system, ATP-binding protein; EC 3.6.3.17 (characterized, see rationale)
to candidate Ac3H11_2881 Ribose ABC transport system, ATP-binding protein RbsA (TC 3.A.1.2.1)
Query= uniprot:A0A0C4Y5F6 (540 letters) >lcl|FitnessBrowser__acidovorax_3H11:Ac3H11_2881 Ribose ABC transport system, ATP-binding protein RbsA (TC 3.A.1.2.1) Length = 496 Score = 348 bits (893), Expect = e-100 Identities = 209/500 (41%), Positives = 297/500 (59%), Gaps = 14/500 (2%) Query: 17 RNICKTFPGVRALRKVELTAYAGEVHALMGENGAGKSTLMKILSGAYTADPGGECHIDGQ 76 RN+ K F VR L V G V+ L+GENGAGKSTLMKIL+G Y + GE +DG Sbjct: 8 RNVTKEFGPVRVLHGVGFALQPGRVYGLLGENGAGKSTLMKILAG-YESPTTGEVVVDGA 66 Query: 77 -RVQIDGPQSARDLGVAVIYQELSLAPNLSVAENIYLGRALQRRGLVARGDMVRACAPTL 135 R G ++A G+ +I+QE +LA +L++A+NI+LG ++R + M L Sbjct: 67 VRAPGGGSRAAEAQGIVLIHQEFNLADDLTIAQNIFLGHEIKRGLFLDDKAMREKTREAL 126 Query: 136 ARLGADFSPAANVASLSIAQRQLVEIARAVHFEARILVMDEPTTPLSTHETDRLFALIRQ 195 A++G P V L +A++QLVEIARA+ AR+L+MDEPT L+ ET+RLFAL+ Sbjct: 127 AKVGLPLDPDTRVRKLIVAEKQLVEIARALARNARLLIMDEPTATLTPGETERLFALMAG 186 Query: 196 LRGEGMAILYISHRMAEIDELADRVTVLRDGCFVGTLDRAHLSQAALVKMMVGRDLSGFY 255 L+ G+ I+YISH++ E++ D V V+RDG V A +++ + +MVGR+L+ + Sbjct: 187 LKAAGVTIIYISHKLDEVERTTDEVVVMRDGLLVAREATASVTRRQMANLMVGRELADLF 246 Query: 256 TKTHGQAVEREVMLSVRDVADGRRVKGCSFDLRAGEVLGLAGLVGAGRTELARLVFGADA 315 + ++VR + +G F++R GE+LG AGLVGAGRTEL + G Sbjct: 247 PPKLPAPQDGAPAITVRGLTVPGWAEGVDFEVRRGEILGFAGLVGAGRTELFEGLLGLRP 306 Query: 316 RTRGEVRIANPAGSGGLVTLPAGGPRQAIDAGIAYLTEDRKLQGLFLDQSVHENINLIVA 375 RT G V IA G V L + PR A G+ YL+EDRK +GL + + N+ L+ Sbjct: 307 RTAGTVEIA-----GQPVQLKS--PRDAARHGLTYLSEDRKGKGLHVHFGLRPNLTLMAL 359 Query: 376 ARDALGLGRLNRTAARRRTTEAIDTLGIRVAHAQVNVGALSGGNQQKVMLSRLLEIQPRV 435 R A L+ A + EA+ GIR +V +LSGGNQQK+ L+++L P V Sbjct: 360 ERYAKPW--LDPAAEQAALREAVQEFGIRTGSLEVRASSLSGGNQQKLALAKVLHPGPSV 417 Query: 436 LILDEPTRGVDIGAKSEIYRLINALAQSGVAILMISSELPEVVGLCDRVLVMREGTLAGE 495 ++LDEPTRGVD+GAK EIY L+ LA+ G+A+++ISSEL E++GLC RV VMR G L Sbjct: 418 VVLDEPTRGVDVGAKREIYHLVQRLAEQGLAVIVISSELMELIGLCHRVAVMRAGRLQTT 477 Query: 496 VRPAGSAAETQERIIALATG 515 ++ T+E +IA ATG Sbjct: 478 LQ---EPHLTEEELIAHATG 494 Lambda K H 0.320 0.136 0.382 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 646 Number of extensions: 28 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 540 Length of database: 496 Length adjustment: 35 Effective length of query: 505 Effective length of database: 461 Effective search space: 232805 Effective search space used: 232805 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory