Align Phosphoenolpyruvate--protein phosphotransferase (EC 2.7.3.9) (characterized)
to candidate Ac3H11_2115 Phosphoenolpyruvate-protein phosphotransferase of PTS system (EC 2.7.3.9)
Query= reanno::pseudo1_N1B4:Pf1N1B4_1146 (953 letters) >FitnessBrowser__acidovorax_3H11:Ac3H11_2115 Length = 585 Score = 301 bits (772), Expect = 6e-86 Identities = 201/571 (35%), Positives = 289/571 (50%), Gaps = 35/571 (6%) Query: 402 IQAIAAAPGIAIGPAHIQVQQVID---YPLRGESAAIERERLKQALADVRRDIEGLIERS 458 + +A A GIAIG A + +D Y + E ER++Q V +++ L Sbjct: 5 VHGLAVARGIAIGRAVLVASSRVDVAHYFVEPSQVEGEIERVRQGRNAVVEELQRLQTDM 64 Query: 459 KAKAIREIFI---THQEMLDDPELTDEVDTRLKQG-ESAEAAWMAVIEAAAKQQESLQDA 514 A E+ H +L D LT V + + +AE A +E A+Q + ++D Sbjct: 65 PTDAPHELTALLDVHLMLLQDEALTGGVKHWITERLYNAEWALTTQLEVIARQFDEMEDE 124 Query: 515 LLAERAADLRDIGRRVLAQLSGVETPAEP-------------------EQPYILVMDEVG 555 L ER ADL + R+L + GV +P P + P +LV ++ Sbjct: 125 YLRERKADLEQVVERILRHMKGVASPVAPPASSPRRKTQQDLLLDDTVDVPLVLVAHDLS 184 Query: 556 PSDVARLDPTRVAGILTARGGATAHSAIVARALGIPALVGAGAAVLLLKPGTPLLIDGQR 615 P+D+ + + AG +T GG T+H+AIVAR++ IPA+VGA AA L++ ++IDG Sbjct: 185 PADMLQFKQSVFAGFVTDVGGKTSHTAIVARSMDIPAVVGARAASQLVRQDDWVIIDGDA 244 Query: 616 GRLHVDADAATLQRATEERDTRELRLKAAAEQRHQPALTTDGHAVEVFANIGESAGVTSA 675 G + VD L + EL + A RH PA+T DGH +E+ ANI + +A Sbjct: 245 GVVIVDPSPIILAEYGFRQRQVELERERLARLRHTPAITIDGHKIELLANIEQPGDAAAA 304 Query: 676 VEQGAEGIGLLRTELIFMAHS-QAPDEATQEVEYRRVLDGLAGRPLVVRTLDVGGDKPLP 734 V GA G+GL R+E +FM S P E Q Y +DG+ G P+ +RT+DVG DKPL Sbjct: 305 VRAGAVGVGLFRSEFLFMGKSGNLPGEDEQYRAYCEAIDGMQGLPVTIRTIDVGADKPLD 364 Query: 735 YWPIAKEE--NPFLGVRGIRLTLQRPQVMEAQLRALLRAADNRPLRIMFPMVGSVDEWRQ 792 K+ NP LG+R IR +L P + QLRA+LRAA + + ++FPM+ E +Q Sbjct: 365 N-KAHKDNYLNPALGLRAIRWSLADPAMFRTQLRAVLRAAAHGKVNLLFPMLAHTHEIQQ 423 Query: 793 ARDMTERLRLEI-----PVADLQLGIMIEVPSAALLAPVLAKEVDFFSVGTNDLTQYTLA 847 + R E+ P +QLG MIEVP+AAL+ K DF S+GTNDL QYTLA Sbjct: 424 TLAQVDLARAELDARGEPYGPVQLGAMIEVPAAALMVRTFLKYFDFLSIGTNDLIQYTLA 483 Query: 848 IDRGHPTLSAQADGLHPAVLQLIDITVRAAHAHGKWVGVCGELAADPLAVPVLVGLGVDE 907 IDR ++ D LHPAVL+L+ + GK V VCGE A D +L+GLG+ Sbjct: 484 IDRADEAVAHLYDPLHPAVLRLVGDVIAEGERQGKSVCVCGETAGDVTMTRLLLGLGLRS 543 Query: 908 LSVSGRSIAEVKARIRELSLTQTQTLAQQAL 938 S+ I +K + + AQQ + Sbjct: 544 FSMHPAQILAIKQEVLRADTRKLAPWAQQVI 574 Lambda K H 0.318 0.135 0.381 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 1087 Number of extensions: 48 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 953 Length of database: 585 Length adjustment: 40 Effective length of query: 913 Effective length of database: 545 Effective search space: 497585 Effective search space used: 497585 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 55 (25.8 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory