Align Fructose import ATP-binding protein FruK; EC 7.5.2.- (characterized)
to candidate Ac3H11_609 L-arabinose transport ATP-binding protein AraG (TC 3.A.1.2.2)
Query= SwissProt::Q8G847 (513 letters) >lcl|FitnessBrowser__acidovorax_3H11:Ac3H11_609 L-arabinose transport ATP-binding protein AraG (TC 3.A.1.2.2) Length = 505 Score = 314 bits (805), Expect = 4e-90 Identities = 178/513 (34%), Positives = 306/513 (59%), Gaps = 22/513 (4%) Query: 7 IVVMKGITIEFPGVKALDGVDLTLYPGEVHALMGENGAGKSTMIKALTGVYKINA--GSI 64 ++ M+ I FPGV AL+ V+L + GE+HA++GENGAGKST++K L+GVY + G I Sbjct: 2 LLEMRNIRKTFPGVVALNQVNLQVQAGEIHAIVGENGAGKSTLMKVLSGVYPHGSYSGQI 61 Query: 65 MVDGKPQQFNGTLDAQNAGIATVYQEVNLCTNLSVGENVMLGHEKRGPFGIDWKKTHEAA 124 + DG+ ++F G D+++ GI ++QE+ L LS+ EN+ LG+E IDW H A Sbjct: 62 LFDGQEREFAGIRDSEHLGIIIIHQELALVPLLSIAENIFLGNETARHGVIDWMAAHSRA 121 Query: 125 KKYLAQMGLESIDPHTPLSSISIAMQQLVAIARAMVINAKVLILDEPTSSLDANEVRDLF 184 + L ++GL P TP+ + + QQLV IA+A+ ++LILDEPT+SL+ N+ + L Sbjct: 122 QALLHKVGLGE-SPDTPVGQLGVGKQQLVEIAKALSRKVRLLILDEPTASLNENDSQALL 180 Query: 185 AIMRKVRDSGVAILFVSHFLDQIYEITDRLTILRNGQFIKEVMTKDTP--RDELIGMMIG 242 ++ +++ G+ + +SH L++I + D +T+LR+G ++ + ++ P D +I M+G Sbjct: 181 DLLLELKAQGITCILISHKLNEISRVADAITVLRDGSTVQMLDCREGPVSEDRVIQAMVG 240 Query: 243 KSAAELSQIGAKKARREITPGEKPIVDVKGL-------GKKGTINPVDVDIYKGEVVGFA 295 + ++ + +R+ GE + +V+ + + +D+++ +GE+VG A Sbjct: 241 REMSD------RYPQRQPQVGEI-VFEVRNWRAHHPQRSDREHLKGIDLNVRRGEIVGIA 293 Query: 296 GLLGSGRTELGRLLYGAD--KPDSGTYTLNGKKVNISDPYTALKNKIAYSTENRRDEGII 353 GL+G+GRTEL ++G + SG L+G+ +++S A+ + +AY TE+R+ G++ Sbjct: 294 GLMGAGRTELAMSIFGRSWGQRISGEVRLHGQPIDVSTVEKAVSHGLAYVTEDRKGNGLV 353 Query: 354 GDLTVRQNILIALQATRGMFKPIPKKEADAIVDKYMKELNVRPADPDRPVKNLSGGNQQK 413 + ++ N +A I + + Y ++L +R + D+ NLSGGNQQK Sbjct: 354 LNEDIQFNTSLANLPGVSFASVIDSGQEHRVAQDYREKLRIRCSGVDQKTLNLSGGNQQK 413 Query: 414 VLIGRWLATHPELLILDEPTRGIDIGAKAEIQQVVLDLASQGMGVVFISSELEEVVRLSD 473 V++ +WL T PE+LILDEPTRGID+GAK EI ++ LA++G V+ ISSE+ E++ ++D Sbjct: 414 VVLSKWLFTSPEVLILDEPTRGIDVGAKYEIYTLIAQLAAEGKCVIVISSEMPELLGITD 473 Query: 474 DIEVLKDRHKIAEIENDDTVSQATIVETIANTN 506 I V+ + +AE+ + SQ I+ I + Sbjct: 474 RIYVMNEGRFVAEMPTSE-ASQEKIMRAIVKAS 505 Lambda K H 0.316 0.135 0.376 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 635 Number of extensions: 36 Number of successful extensions: 9 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 513 Length of database: 505 Length adjustment: 34 Effective length of query: 479 Effective length of database: 471 Effective search space: 225609 Effective search space used: 225609 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.6 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory