Align Monosaccharide-transporting ATPase, component of Glucose porter. Also bind xylose (Boucher and Noll 2011). Induced by glucose (Frock et al. 2012). Directly regulated by glucose-responsive regulator GluR (characterized)
to candidate Ac3H11_2881 Ribose ABC transport system, ATP-binding protein RbsA (TC 3.A.1.2.1)
Query= TCDB::G4FGN3 (494 letters) >lcl|FitnessBrowser__acidovorax_3H11:Ac3H11_2881 Ribose ABC transport system, ATP-binding protein RbsA (TC 3.A.1.2.1) Length = 496 Score = 372 bits (956), Expect = e-107 Identities = 207/496 (41%), Positives = 316/496 (63%), Gaps = 6/496 (1%) Query: 1 MKPILEVKSIHKRFPGVHALKGVSMEFYPGEVHAIVGENGAGKSTLMKIIAGVYQPDEGE 60 M +E +++ K F V L GV PG V+ ++GENGAGKSTLMKI+AG P GE Sbjct: 1 MSVAVEFRNVTKEFGPVRVLHGVGFALQPGRVYGLLGENGAGKSTLMKILAGYESPTTGE 60 Query: 61 IIYEGRGVRWNHPSEAINA-GIVTVFQELSVMDNLSVAENIFMGDEEKRGIFIDYKKMYR 119 ++ +G S A A GIV + QE ++ D+L++A+NIF+G E KRG+F+D K M R Sbjct: 61 VVVDGAVRAPGGGSRAAEAQGIVLIHQEFNLADDLTIAQNIFLGHEIKRGLFLDDKAM-R 119 Query: 120 EAEKFMKEEFGIEIDPEEKLGKYSIAIQQMVEIARAVYKKAKVLILDEPTSSLTQKETEK 179 E + + G+ +DP+ ++ K +A +Q+VEIARA+ + A++LI+DEPT++LT ETE+ Sbjct: 120 EKTREALAKVGLPLDPDTRVRKLIVAEKQLVEIARALARNARLLIMDEPTATLTPGETER 179 Query: 180 LFEVVKSLKEKGVAIIFISHRLEEIFEICDKVSVLRDGEYIGTDSIENLTKEKIVEMMVG 239 LF ++ LK GV II+ISH+L+E+ D+V V+RDG + ++ ++T+ ++ +MVG Sbjct: 180 LFALMAGLKAAGVTIIYISHKLDEVERTTDEVVVMRDGLLVAREATASVTRRQMANLMVG 239 Query: 240 RKLEKFYIKE--AHEPGEVVLEVKNLSGERF-ENVSFSLRRGEILGFAGLVGAGRTELME 296 R+L + + A + G + V+ L+ + E V F +RRGEILGFAGLVGAGRTEL E Sbjct: 240 RELADLFPPKLPAPQDGAPAITVRGLTVPGWAEGVDFEVRRGEILGFAGLVGAGRTELFE 299 Query: 297 TIFGFRPKRGGEIYIEGKRVEINHPLDAIEQGIGLVPEDRKKLGLILIMSIMHNVSLPSL 356 + G RP+ G + I G+ V++ P DA G+ + EDRK GL + + N++L +L Sbjct: 300 GLLGLRPRTAGTVEIAGQPVQLKSPRDAARHGLTYLSEDRKGKGLHVHFGLRPNLTLMAL 359 Query: 357 DRIKKGPFISFKREKELADWAIKTFDIRPAYPDRKVLYLSGGNQQKVVLAKWLALKPKIL 416 +R K P++ E+ A++ F IR + + LSGGNQQK+ LAK L P ++ Sbjct: 360 ERYAK-PWLDPAAEQAALREAVQEFGIRTGSLEVRASSLSGGNQQKLALAKVLHPGPSVV 418 Query: 417 ILDEPTRGIDVGAKAEIYRIMSQLAKEGVGVIMISSELPEVLQMSDRIAVMSFGKLAGII 476 +LDEPTRG+DVGAK EIY ++ +LA++G+ VI+ISSEL E++ + R+AVM G+L + Sbjct: 419 VLDEPTRGVDVGAKREIYHLVQRLAEQGLAVIVISSELMELIGLCHRVAVMRAGRLQTTL 478 Query: 477 DAKEASQEKVMKLAAG 492 ++E+++ A G Sbjct: 479 QEPHLTEEELIAHATG 494 Score = 89.7 bits (221), Expect = 2e-22 Identities = 71/245 (28%), Positives = 118/245 (48%), Gaps = 12/245 (4%) Query: 256 VVLEVKNLSGER-----FENVSFSLRRGEILGFAGLVGAGRTELMETIFGFRPKRGGEIY 310 V +E +N++ E V F+L+ G + G G GAG++ LM+ + G+ GE+ Sbjct: 3 VAVEFRNVTKEFGPVRVLHGVGFALQPGRVYGLLGENGAGKSTLMKILAGYESPTTGEVV 62 Query: 311 IEGK-RVEINHPLDAIEQGIGLVPEDRKKLGLILIMSIMHNVSLPSLDRIKKGPFISFKR 369 ++G R A QGI L+ ++ L ++I N+ L IK+G F+ K Sbjct: 63 VDGAVRAPGGGSRAAEAQGIVLIHQE---FNLADDLTIAQNIFLGH--EIKRGLFLDDKA 117 Query: 370 EKELADWAIKTFDIRPAYPDRKVLYLSGGNQQKVVLAKWLALKPKILILDEPTRGIDVGA 429 +E A+ + P PD +V L +Q V +A+ LA ++LI+DEPT + G Sbjct: 118 MREKTREALAKVGL-PLDPDTRVRKLIVAEKQLVEIARALARNARLLIMDEPTATLTPGE 176 Query: 430 KAEIYRIMSQLAKEGVGVIMISSELPEVLQMSDRIAVMSFGKLAGIIDAKEASQEKVMKL 489 ++ +M+ L GV +I IS +L EV + +D + VM G L ++ ++ L Sbjct: 177 TERLFALMAGLKAAGVTIIYISHKLDEVERTTDEVVVMRDGLLVAREATASVTRRQMANL 236 Query: 490 AAGLE 494 G E Sbjct: 237 MVGRE 241 Score = 75.5 bits (184), Expect = 4e-18 Identities = 57/226 (25%), Positives = 109/226 (48%), Gaps = 6/226 (2%) Query: 21 KGVSMEFYPGEVHAIVGENGAGKSTLMKIIAGVYQPDEGEIIYEGRGVRWNHPSEAINAG 80 +GV E GE+ G GAG++ L + + G+ G + G+ V+ P +A G Sbjct: 272 EGVDFEVRRGEILGFAGLVGAGRTELFEGLLGLRPRTAGTVEIAGQPVQLKSPRDAARHG 331 Query: 81 IVTVFQELS---VMDNLSVAENI-FMGDEEKRGIFIDYKKMYREAEKFMKEEFGIEIDP- 135 + + ++ + + + N+ M E ++D + A + +EFGI Sbjct: 332 LTYLSEDRKGKGLHVHFGLRPNLTLMALERYAKPWLD-PAAEQAALREAVQEFGIRTGSL 390 Query: 136 EEKLGKYSIAIQQMVEIARAVYKKAKVLILDEPTSSLTQKETEKLFEVVKSLKEKGVAII 195 E + S QQ + +A+ ++ V++LDEPT + +++ +V+ L E+G+A+I Sbjct: 391 EVRASSLSGGNQQKLALAKVLHPGPSVVVLDEPTRGVDVGAKREIYHLVQRLAEQGLAVI 450 Query: 196 FISHRLEEIFEICDKVSVLRDGEYIGTDSIENLTKEKIVEMMVGRK 241 IS L E+ +C +V+V+R G T +LT+E+++ G + Sbjct: 451 VISSELMELIGLCHRVAVMRAGRLQTTLQEPHLTEEELIAHATGTR 496 Lambda K H 0.318 0.138 0.385 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 672 Number of extensions: 38 Number of successful extensions: 9 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 3 Number of HSP's successfully gapped: 3 Length of query: 494 Length of database: 496 Length adjustment: 34 Effective length of query: 460 Effective length of database: 462 Effective search space: 212520 Effective search space used: 212520 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory