Align Aldehyde dehydrogenase (EC 1.2.1.3) (characterized)
to candidate Ac3H11_4393 Aldehyde dehydrogenase (EC 1.2.1.3)
Query= reanno::psRCH2:GFF2231 (506 letters) >FitnessBrowser__acidovorax_3H11:Ac3H11_4393 Length = 507 Score = 763 bits (1969), Expect = 0.0 Identities = 365/505 (72%), Positives = 426/505 (84%) Query: 2 IYAQPGTPGAVVSFKPRYGNYIGGEFVPPVKGEYFVNTSPVNGEVIAEFPRSGAEDIEKA 61 +YA PG PGA +++KP+Y N+IGG+FVPPVKG+YF +PV+G+V RS AEDIE A Sbjct: 3 VYAAPGAPGAKITYKPQYDNFIGGKFVPPVKGQYFDVITPVSGKVYTRAARSTAEDIELA 62 Query: 62 LDAAHAAADAWGKTSVQDRALILLKIADRIEANLEKLAVAETWDNGKAVRETLNADVPLA 121 LDAAHAAAD+WGKT RA ILLKIA+RIE NLE+LA AET DNGKA+RETLNAD+PL Sbjct: 63 LDAAHAAADSWGKTDAATRANILLKIANRIEENLERLAYAETVDNGKAIRETLNADIPLT 122 Query: 122 ADHFRYFAGCIRAQEGSAAEINEHTAAYHFHEPLGVVGQIIPWNFPLLMAAWKLAPALAA 181 DHFRYFAGC+RAQEG+ + I+E+T AYH EPLGVVGQIIPWNFP+LMAAWKLAPAL A Sbjct: 123 VDHFRYFAGCVRAQEGALSNIDENTVAYHIQEPLGVVGQIIPWNFPILMAAWKLAPALGA 182 Query: 182 GNCIVLKPAEQTPLSIMVFIEVVGDLLPPGVLNIVQGFGREAGQALATSTRIAKIAFTGS 241 GNC+VLKPAE TP+SI++ +E++ DLLPPGVLNIV GFGREAG LA S RIAKIAFTGS Sbjct: 183 GNCVVLKPAESTPISILILVELIADLLPPGVLNIVNGFGREAGMPLAQSKRIAKIAFTGS 242 Query: 242 TPVGSHIMRCAAENIIPSTVELGGKSPNIFFEDIMNAEPAFIEKAAEGLVLAFFNQGEVC 301 T G I + AA N+IP+T+ELGGKSPNIFF DIM+ + AF++KA EGLVL FNQGEVC Sbjct: 243 TSTGRVIAQAAANNLIPATLELGGKSPNIFFADIMDKDDAFLDKAIEGLVLFAFNQGEVC 302 Query: 302 TCPSRALIQESIFEPFMEVVMKKIKAIKRGNPLDTDTMVGAQASEQQFDKILSYMEIAQQ 361 TCPSRA+IQESI++ FME V+K++ AIK NPLDTD+M+GAQAS++Q KILSY+++ +Q Sbjct: 303 TCPSRAIIQESIYDQFMERVLKRVAAIKHQNPLDTDSMMGAQASKEQLTKILSYLDLGKQ 362 Query: 362 EGAQILTGGAAEKLEGSLSTGYYVQPTLIKGHNKMRVFQEEIFGPVVGVATFKDEAEALA 421 EGA++L GG L G L GYYVQPTL KGHNKMR+FQEEIFGPV+ V TFKDEAEALA Sbjct: 363 EGAEVLAGGGQAHLGGDLEGGYYVQPTLFKGHNKMRIFQEEIFGPVLAVTTFKDEAEALA 422 Query: 422 IANDTEFGLGAGVWTRDINRAYRMGRGIKAGRVWTNCYHLYPAHAAFGGYKKSGVGRETH 481 IANDT +GLGAGVW+R+ N AYRMGR IKAGRVWTNCYH YPAHAAFGGYK+SG+GRETH Sbjct: 423 IANDTLYGLGAGVWSRNGNVAYRMGRAIKAGRVWTNCYHAYPAHAAFGGYKESGIGRETH 482 Query: 482 KMMLDHYQQTKNLLISYDINPLGFF 506 KMMLDHYQQTKNLL+SY N LGFF Sbjct: 483 KMMLDHYQQTKNLLVSYSENKLGFF 507 Lambda K H 0.319 0.136 0.406 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 760 Number of extensions: 24 Number of successful extensions: 1 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 506 Length of database: 507 Length adjustment: 34 Effective length of query: 472 Effective length of database: 473 Effective search space: 223256 Effective search space used: 223256 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory