GapMind for catabolism of small carbon sources

 

Alignments for a candidate for nbaF in Acidovorax sp. GW101-3H11

Align 2-amino-5-chloromuconic acid deaminase; 2-aminomuconate deaminase; EC 3.5.99.5 (characterized)
to candidate Ac3H11_417 Asp-tRNAAsn/Glu-tRNAGln amidotransferase A subunit and related amidases

Query= SwissProt::Q38M35
         (462 letters)



>FitnessBrowser__acidovorax_3H11:Ac3H11_417
          Length = 451

 Score =  208 bits (529), Expect = 3e-58
 Identities = 147/396 (37%), Positives = 205/396 (51%), Gaps = 28/396 (7%)

Query: 70  PLMGLPVSVKDLYGVPGLPVFAGSDEALPEAWQAAG--PLVARLQRQLGIVVGKTHTVEF 127
           PL GL VSVKDL+ + G    AGS  AL +A  AA   P VARL+     ++G+T+ VEF
Sbjct: 60  PLAGLAVSVKDLFDIAGQATPAGST-ALADAPAAAQDCPAVARLRAAGASLIGRTNMVEF 118

Query: 128 AFGGLGVNAHWGTP-----RNPWSPHEHRVPGGSSAGAGVSLVQGSALLALGTDTAGSVR 182
           AF G+GVN H GTP     R+   P   RVPGGSS+GAGVS+  G+A + LG+DT GS+R
Sbjct: 119 AFSGVGVNPHHGTPAAWDARSGALPGAPRVPGGSSSGAGVSVATGAAFIGLGSDTGGSIR 178

Query: 183 VPASMTGQVGLKTTVGRWPVEGIVPLSSSLDTAGVLTRTVEDLAYAFAALDTESQGLPAP 242
           +PA++ G VG K T    P  G VPLS++LDTA  +TR+V D   A   L    +   + 
Sbjct: 179 IPAALNGIVGFKNTAHLVPTTGAVPLSTTLDTACAMTRSVRDAIVAHEVL-AARRVTRSL 237

Query: 243 APVRVQGLRVGVPTNHFWDDIDPSIAAAVEAAVQRLAQAGAQVVRFPLPHCEEAFDIFRR 302
           AP  +   R+ VP+  F D +D ++A A E  ++ L QAGA +   PLP   E       
Sbjct: 238 AP--LSQYRLAVPSTLFLDGLDATVAQAFERTLRTLRQAGAHIDTIPLPAVAEQ----PA 291

Query: 303 GGLAASELAAYLDQHFPHKVERLDPVVRDRVRWAEQVSSVEYLRRKAVLQRCGAGAARLF 362
            G AA E  A+  +       R DP VR R+     + + EY+      Q+  A      
Sbjct: 292 YGFAAPEAYAWHRELLQRAGNRYDPRVRMRIEKGATLMAWEYIDLLQARQQWIARMLADM 351

Query: 363 DDVDVLLTPTVPASPPRLADIGTVE------------TYAPANMKAMRNTAISNLFGWCA 410
           +  D LL+PTVP   P +AD+   +             +   N   +RNT++ NL   CA
Sbjct: 352 EPYDTLLSPTVPIVAPLVADVAPADGTDKARDAARDAEFFRVNNLLLRNTSVVNLLDGCA 411

Query: 411 LTMPVGLDANRMPVGLQLMGPPRAEARLIGIALGIE 446
           L++P       +PVGL +      +  ++ + L IE
Sbjct: 412 LSLPCHA-PGELPVGLMVWHGALRDDTVLNVGLQIE 446


Lambda     K      H
   0.320    0.135    0.411 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 547
Number of extensions: 31
Number of successful extensions: 6
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 462
Length of database: 451
Length adjustment: 33
Effective length of query: 429
Effective length of database: 418
Effective search space:   179322
Effective search space used:   179322
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.8 bits)
S2: 51 (24.3 bits)

This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory