Align 2-hydroxymuconate-6-semialdehyde dehydrogenase (EC 1.2.1.85) (characterized)
to candidate Ac3H11_4805 5-carboxymethyl-2-hydroxymuconate semialdehyde dehydrogenase (EC 1.2.1.60)
Query= BRENDA::Q1XGK8 (486 letters) >FitnessBrowser__acidovorax_3H11:Ac3H11_4805 Length = 491 Score = 323 bits (827), Expect = 1e-92 Identities = 191/479 (39%), Positives = 263/479 (54%), Gaps = 16/479 (3%) Query: 6 HFINGAFVGSASGRTFEDINPSNGQVIGHVHEAGRAEVDAAVKAARAALKGPWGKLSVAE 65 H+I+G V AS F+ +P + ++G + E A VDAAV AA A W L+ AE Sbjct: 17 HYIDGQRV--ASDMRFDLHSPIDQALLGRISEGSPAHVDAAVSAAARAFPA-WSALTAAE 73 Query: 66 RAEILHRVADGITARFDEFLEAECLDTGKPKSLASHIDIPRGAANFKVFADLLKNVANEA 125 R L R A I R + F E D G S H +PR N FA+ ++ + Sbjct: 74 RKPYLDRFAAEIGKRAEAFCTLESNDAGVLLSRMKHGVVPRAMLNITWFAEHALSLQDRP 133 Query: 126 FEMATPDGAGAINYAVRRPKGVIGVISPWNLPLLLMTWKVGPALACGNTVVVKPSEETPL 185 E A + P GV+ +I+PWN PL+L TWK+GPALA GN V+VKP E PL Sbjct: 134 IETEQ-----ATHLVRHDPAGVVAIITPWNAPLMLATWKLGPALAAGNCVIVKPPEWAPL 188 Query: 186 TATLLGEVMQAAGVPAGVYNVVHGFGGDSAGAFLTEHPDVDAYTFTGETGTGEVIMRAAA 245 T++LL + AAG+P GV+N+V G G S GA L P + +FTG T + I ++A Sbjct: 189 TSSLLADCAHAAGLPPGVFNIVQG-AGVSTGARLVSDPRLARISFTGSVPTAKWIAQSAG 247 Query: 246 KGVRQVSLELGGKNAGIVFADCDMDKAIEGTLRSAFANCGQVCLGTERVYVERPIFDEFV 305 + SLELGGK+A IV D D+D A T + N GQVCL R V R + D FV Sbjct: 248 ANLVPCSLELGGKSAFIVLEDADIDNA-AATGALMYRNAGQVCLAGTRFLVHRKVHDAFV 306 Query: 306 ARLKAGAESLMIGPPDDASSNFGPLVSLKHREKVLSYYQQAVDDGGSVITGGGVPDMPAH 365 A L+ E L +G P D ++ GP++ + E+V + Q+AV DG +++ GG H Sbjct: 307 AALRGYVEKLTVGDPRDGATEVGPIIHPRQVERVHGFVQRAVADGATLLWGGA-----QH 361 Query: 366 LAGGAWVQPTIWTGLSDDSAVVTEEIFGPCCHIRPFDTEEEAIELANSLPYGLASAIWTE 425 G + QPT+ T + DS +V E+FGP ++ FD++EEAI LAN YGL + Sbjct: 362 PFGAQYYQPTLLTDVRQDSEIVQNEVFGPVLTLQTFDSDEEAIALANGTDYGLGGVCYGA 421 Query: 426 NGSRAHRVAGQIEAGIVWVNSWFLRDLRTAFGGSKQSGIGREGGVHSLEFYTELKNICV 484 A VA Q+ G +WVNS+ +RDL FGG K+SG+GREGG S EF+ ++K++ V Sbjct: 422 T-EHASAVAQQVRTGFIWVNSFGIRDLAAPFGGIKRSGVGREGGDWSFEFFCDVKDVVV 479 Lambda K H 0.318 0.136 0.411 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 662 Number of extensions: 33 Number of successful extensions: 6 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 486 Length of database: 491 Length adjustment: 34 Effective length of query: 452 Effective length of database: 457 Effective search space: 206564 Effective search space used: 206564 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory