Align Methylmalonate-semialdehyde dehydrogenase (EC 1.2.1.27) (characterized)
to candidate Ac3H11_1496 Aldehyde dehydrogenase (EC 1.2.1.3)
Query= reanno::pseudo1_N1B4:Pf1N1B4_1229 (505 letters) >FitnessBrowser__acidovorax_3H11:Ac3H11_1496 Length = 500 Score = 243 bits (621), Expect = 9e-69 Identities = 154/444 (34%), Positives = 239/444 (53%), Gaps = 13/444 (2%) Query: 10 QKVKLLIDGEWVESQTTEWHDIVNPATQQVLAKVPFATAAEVDAAISAAHRAFQT--WKL 67 ++V +I G + + W + +PAT+ V+A+ P + AA++ A+++A RAF + W+ Sbjct: 20 RRVGNVIGGVSGPALSGRWLPVTDPATEMVVAEAPDSDAADIARAVASAQRAFDSHVWRG 79 Query: 68 TPIGARMRIMLKLQALIREHSKRIAVVLSNEQGKTIADAEG-DIFRGLEVVEHACSIGSL 126 R +++ +L LI H+ ++ + + + GK A D+ G E V + + Sbjct: 80 LRPADREKLLFRLSELIERHADELSALETLQSGKLQGIARAIDVQAGAEFVRYMAGWATK 139 Query: 127 QMGEFAEN---VAGGV-DTYTLRQPIGVCAGITPFNFPAMIPLWMFPMAIACGNTFVLKP 182 G+ +N + G TYT R+P+GV I P+NFP I LW A+A G T VLKP Sbjct: 140 LEGQTLDNSIPIPGPQWVTYTRREPVGVVGAIVPWNFPLAIALWKIAPALAAGCTVVLKP 199 Query: 183 SEQDPMSTMLLVELAIEAGIPPGVLNVVHG-GKDVVDALCTHKDIKAVSFVGSTAVGTHV 241 SE P++ + L LA+EAGIP GVLNVV G G AL H ++ +SF GSTAVG V Sbjct: 200 SEDTPLTALRLAHLALEAGIPEGVLNVVCGRGATAGAALIAHPGVRKLSFTGSTAVGKVV 259 Query: 242 YDLAGKHGKRVQSMMGAKNHAVVLPDANREQALNALVGAGFGAAGQRCMATS-VVVLVGA 300 A ++ R +G K+ AVV+ DA+ Q + F GQ C A+S ++V Sbjct: 260 GHAAVENMARFTLELGGKSPAVVMEDADPSQVAQGIATGIFFHQGQVCTASSRLLVHRSL 319 Query: 301 AKQWLPDLKALAQKLKVNAGSEPGTDVGPVISKRAKARILDLIESGIKEGAKLELDGRDI 360 ++ L +L +AQ +++ +G + T GP+ SK AR++D I S EGA L G + Sbjct: 320 YRRVLDELAGIAQGMRIGSGFDAATQFGPLTSKAHFARVMDFIASAKAEGATLVAGGERV 379 Query: 361 SVPGYEKGNFVGPTLFSGVTPEMQIYTQEIFGPVLVVLEVDTLDQAIALVNANPFGNGTG 420 ++ G FV PT+F+ T +M++ +E+FGPVL V D ++ AIA N P+G Sbjct: 380 ----HDAGCFVQPTIFADTTAQMRVVREEVFGPVLAVAPFDDVEDAIAAANDTPYGLAAS 435 Query: 421 LFTQSGAAARKFQTEIDVGQVGIN 444 L+TQS + A + + G V +N Sbjct: 436 LWTQSLSHAHRIVPRLQAGVVWVN 459 Lambda K H 0.319 0.135 0.397 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 573 Number of extensions: 30 Number of successful extensions: 6 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 505 Length of database: 500 Length adjustment: 34 Effective length of query: 471 Effective length of database: 466 Effective search space: 219486 Effective search space used: 219486 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory