Align acyl CoA carboxylase biotin carboxylase subunit (EC 2.1.3.15; EC 6.4.1.3; EC 6.3.4.14) (characterized)
to candidate Ac3H11_1927 Methylcrotonyl-CoA carboxylase biotin-containing subunit (EC 6.4.1.4)
Query= metacyc::MONOMER-13597 (509 letters) >FitnessBrowser__acidovorax_3H11:Ac3H11_1927 Length = 670 Score = 308 bits (790), Expect = 3e-88 Identities = 186/492 (37%), Positives = 277/492 (56%), Gaps = 18/492 (3%) Query: 6 RVLVANRGEIATRVLKAIKEMGMTAIAVYSEADKYAVHTKYADEAYYIGKAPALDSYLNI 65 ++L+ANR EIA R++ MG+ +AVYS+ D A+H + A +A +G A + D+YL Sbjct: 3 KILIANRSEIARRIIHTAHRMGIETVAVYSDPDASALHVREATQAVALGGAASADTYLRT 62 Query: 66 EHIIDAAEKAHVDAIHPGYGFLSENAEFAEAVEKAGITFIGPSSEVMRKIKDKLDGKRLA 125 + ++ AA DA+HPGYGFLSENA+FA+AV AG+T+IGP +R + K K LA Sbjct: 63 DKLLAAARATGADAVHPGYGFLSENADFAQAVVDAGLTWIGPPPAAIRALGSKAGAKALA 122 Query: 126 NMAGVPTAPGSDGPVTSIDEALKLAEKIGYPIMVKAASGGGGVGITRVDNQDQLMDVWER 185 VP PG G S + A +IG P+MVKA +GGGG G+ V + QL Sbjct: 123 VAHCVPCLPGYAGDDQSDERFAAEAARIGTPLMVKAVAGGGGRGMRLVTDLAQLPAALAS 182 Query: 186 NKRLAYQAFGKADLFIEKYAVNPRHIEFQLIGDKYGNYVVAWERECTIQRRNQKLIEEAP 245 + A FG DL IE+ + PRH+E Q+ D +G + ER+C++QRR+QK+IEEAP Sbjct: 183 ARSEALAGFGCGDLLIERALLQPRHVEVQIFADAHGACIHLGERDCSVQRRHQKIIEEAP 242 Query: 246 SPALKMEERESMFEPIIKFGKLINYFTLGTFETAFSDVSRDFYFLELNKRLQVEHPTTEL 305 SPA+ RE M + + Y GT E F DFY +E+N RLQVEHP TE Sbjct: 243 SPAVDAALRERMGACAVALAQAAGYVGAGTVE--FLLDGPDFYLMEMNTRLQVEHPVTEA 300 Query: 306 IFRIDLVKLQIKLAAGEHLPFSQEDLNKRVRGTAIEYRINAEDALNNFTGSSGFVTYYRE 365 + +DLV+ QI++A GE LP +Q+ ++ ++G AIE R+ AEDA +F +G V + Sbjct: 301 LTGLDLVEWQIRVARGEPLPLTQDQVH--LQGHAIEVRLCAEDA--HFRPHTGRVLQFSA 356 Query: 366 P-------TGPG-VRVDSGIESGSYVPPYYDSLVSKLIVYGESREYAIQAGIRALADYKI 417 P PG +R D +E G+ V P+YD+++ KLIV+ +R AI A +RAL ++ Sbjct: 357 PPATAFERAAPGALRFDHALEEGAEVTPHYDAMLGKLIVHAPTRAEAIAALVRALHSTRV 416 Query: 418 GGIKTTIELYKWIMQDPDFQEGKFSTSYISQKTDQFVKYLREQEEIKAAIAAEIQSRGLL 477 G+ T +Q P F G ++++ Q ++ L E+K + + + ++ Sbjct: 417 LGLPTNRAFLAACLQHPVFGAGHALVPFLAEHAAQ-LQGLLSNIELKVLVQSAV---AVI 472 Query: 478 RTSSTDNKGKAQ 489 +S++ AQ Sbjct: 473 FSSNSSGAASAQ 484 Lambda K H 0.317 0.135 0.385 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 724 Number of extensions: 29 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 509 Length of database: 670 Length adjustment: 36 Effective length of query: 473 Effective length of database: 634 Effective search space: 299882 Effective search space used: 299882 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.6 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory