Align Ribose import ATP-binding protein RbsA 1; EC 7.5.2.7 (characterized, see rationale)
to candidate Ac3H11_609 L-arabinose transport ATP-binding protein AraG (TC 3.A.1.2.2)
Query= uniprot:Q9WXX0 (520 letters) >lcl|FitnessBrowser__acidovorax_3H11:Ac3H11_609 L-arabinose transport ATP-binding protein AraG (TC 3.A.1.2.2) Length = 505 Score = 374 bits (961), Expect = e-108 Identities = 211/506 (41%), Positives = 327/506 (64%), Gaps = 22/506 (4%) Query: 14 ILKAKGIVKRFPGVVAVDNVDFEVYENEIVSLIGENGAGKSTLIKILTGVLKPDA--GEI 71 +L+ + I K FPGVVA++ V+ +V EI +++GENGAGKSTL+K+L+GV + G+I Sbjct: 2 LLEMRNIRKTFPGVVALNQVNLQVQAGEIHAIVGENGAGKSTLMKVLSGVYPHGSYSGQI 61 Query: 72 LVNGERVEFHSPVDAFKKGISVIHQELNLCDNMTVAENIFLAYEAVRGQKRTLSSRVDEN 131 L +G+ EF D+ GI +IHQEL L +++AENIFL E R +D Sbjct: 62 LFDGQEREFAGIRDSEHLGIIIIHQELALVPLLSIAENIFLGNETAR------HGVIDWM 115 Query: 132 YMYTRSKELLDLIGAKFSPDALVRNLTTAQRQMVEICKALVKEPRIIFMDEPTSSLTVEE 191 ++R++ LL +G SPD V L ++Q+VEI KAL ++ R++ +DEPT+SL + Sbjct: 116 AAHSRAQALLHKVGLGESPDTPVGQLGVGKQQLVEIAKALSRKVRLLILDEPTASLNEND 175 Query: 192 TERLFEIIEMLKSRGISVVFVSHRLDEVMRISDRIVVMRDGKRIGEL--KKGEFDVDTII 249 ++ L +++ LK++GI+ + +SH+L+E+ R++D I V+RDG + L ++G D +I Sbjct: 176 SQALLDLLLELKAQGITCILISHKLNEISRVADAITVLRDGSTVQMLDCREGPVSEDRVI 235 Query: 250 KMMVGREVEFFPHGIETRPGEIALEVRNLKW-------KDKVKNVSFEVRKGEVLGFAGL 302 + MVGRE+ + + GEI EVRN + ++ +K + VR+GE++G AGL Sbjct: 236 QAMVGREMSDRYPQRQPQVGEIVFEVRNWRAHHPQRSDREHLKGIDLNVRRGEIVGIAGL 295 Query: 303 VGAGRTETMLLVFGVN--QKESGDIYVNGRKVEIKNPEDAIKMGIGLIPEDRKLQGLVLR 360 +GAGRTE + +FG + Q+ SG++ ++G+ +++ E A+ G+ + EDRK GLVL Sbjct: 296 MGAGRTELAMSIFGRSWGQRISGEVRLHGQPIDVSTVEKAVSHGLAYVTEDRKGNGLVLN 355 Query: 361 MTVKDNIVLPSLKKISRWGLVLDERKEEEISEDYVKRLSIKTPSIYQITENLSGGNQQKV 420 ++ N L +L +S + V+D +E +++DY ++L I+ + Q T NLSGGNQQKV Sbjct: 356 EDIQFNTSLANLPGVS-FASVIDSGQEHRVAQDYREKLRIRCSGVDQKTLNLSGGNQQKV 414 Query: 421 VLAKWLATNADILIFDEPTRGIDVGAKAEIHRMIRELAAQGKAVIMISSELPEILNLSDR 480 VL+KWL T+ ++LI DEPTRGIDVGAK EI+ +I +LAA+GK VI+ISSE+PE+L ++DR Sbjct: 415 VLSKWLFTSPEVLILDEPTRGIDVGAKYEIYTLIAQLAAEGKCVIVISSEMPELLGITDR 474 Query: 481 IVVMWEGEITAVLDNREKRVTQEEIM 506 I VM EG A + E +QE+IM Sbjct: 475 IYVMNEGRFVAEMPTSE--ASQEKIM 498 Score = 82.4 bits (202), Expect = 4e-20 Identities = 68/247 (27%), Positives = 127/247 (51%), Gaps = 13/247 (5%) Query: 273 LEVRNLKWKDK----VKNVSFEVRKGEVLGFAGLVGAGRTETMLLVFGV--NQKESGDIY 326 LE+RN++ + V+ +V+ GE+ G GAG++ M ++ GV + SG I Sbjct: 3 LEMRNIRKTFPGVVALNQVNLQVQAGEIHAIVGENGAGKSTLMKVLSGVYPHGSYSGQIL 62 Query: 327 VNGRKVEIKNPEDAIKMGIGLIPEDRKLQGLVLRMTVKDNIVLPSLKKISRWGLVLDERK 386 +G++ E D+ +GI +I ++ L L +++ +NI L + + +R G V+D Sbjct: 63 FDGQEREFAGIRDSEHLGIIIIHQELALVPL---LSIAENIFLGN--ETARHG-VIDWMA 116 Query: 387 EEEISEDYVKRLSIKTPSIYQITENLSGGNQQKVVLAKWLATNADILIFDEPTRGIDVGA 446 ++ + ++ + + + L G QQ V +AK L+ +LI DEPT ++ Sbjct: 117 AHSRAQALLHKVGLGESPDTPVGQ-LGVGKQQLVEIAKALSRKVRLLILDEPTASLNEND 175 Query: 447 KAEIHRMIRELAAQGKAVIMISSELPEILNLSDRIVVMWEGEITAVLDNREKRVTQEEIM 506 + ++ EL AQG I+IS +L EI ++D I V+ +G +LD RE V+++ ++ Sbjct: 176 SQALLDLLLELKAQGITCILISHKLNEISRVADAITVLRDGSTVQMLDCREGPVSEDRVI 235 Query: 507 YYASGQK 513 G++ Sbjct: 236 QAMVGRE 242 Score = 75.5 bits (184), Expect = 4e-18 Identities = 51/224 (22%), Positives = 109/224 (48%), Gaps = 4/224 (1%) Query: 33 VDFEVYENEIVSLIGENGAGKSTLIKILTGVL--KPDAGEILVNGERVEFHSPVDAFKKG 90 +D V EIV + G GAG++ L + G + +GE+ ++G+ ++ + A G Sbjct: 280 IDLNVRRGEIVGIAGLMGAGRTELAMSIFGRSWGQRISGEVRLHGQPIDVSTVEKAVSHG 339 Query: 91 ISVIHQELNLCDNMTVAENIFLAYEAVRGQKRTLSSRVDENYMYTRSKELLDLIGAKFSP 150 ++ + ++ + + + E+I + +S +D + +++ + + + S Sbjct: 340 LAYVTEDRK-GNGLVLNEDIQFNTSLANLPGVSFASVIDSGQEHRVAQDYREKLRIRCSG 398 Query: 151 -DALVRNLTTAQRQMVEICKALVKEPRIIFMDEPTSSLTVEETERLFEIIEMLKSRGISV 209 D NL+ +Q V + K L P ++ +DEPT + V ++ +I L + G V Sbjct: 399 VDQKTLNLSGGNQQKVVLSKWLFTSPEVLILDEPTRGIDVGAKYEIYTLIAQLAAEGKCV 458 Query: 210 VFVSHRLDEVMRISDRIVVMRDGKRIGELKKGEFDVDTIIKMMV 253 + +S + E++ I+DRI VM +G+ + E+ E + I++ +V Sbjct: 459 IVISSEMPELLGITDRIYVMNEGRFVAEMPTSEASQEKIMRAIV 502 Lambda K H 0.319 0.138 0.381 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 678 Number of extensions: 38 Number of successful extensions: 11 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 3 Number of HSP's successfully gapped: 3 Length of query: 520 Length of database: 505 Length adjustment: 35 Effective length of query: 485 Effective length of database: 470 Effective search space: 227950 Effective search space used: 227950 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory