Align Benzoate--CoA ligase; Benzoyl-CoA synthetase; EC 6.2.1.25 (characterized)
to candidate AZOBR_RS19780 AZOBR_RS19780 AMP-dependent synthetase
Query= SwissProt::Q8GQN9 (527 letters) >FitnessBrowser__azobra:AZOBR_RS19780 Length = 538 Score = 200 bits (509), Expect = 1e-55 Identities = 163/522 (31%), Positives = 250/522 (47%), Gaps = 19/522 (3%) Query: 18 IPERYNAADDLIGRNLLAGRG-GKTVYIDD-----AGSYTYDELALRVNRCGSALRTTLG 71 +PERYN D+ + A R +T I ++++ ++ NR +AL G Sbjct: 19 VPERYNIGVDVCDK--WAERDPDRTALIHKRRDGAVETHSFADIRRLSNRLANALAAH-G 75 Query: 72 LQPKDRVLVCVLDGIDFPTTFLGAIKGGVVPIAINTLLTESDYEYMLTDSAARVAVVSQE 131 + DRV + + + + + K G V + + +L EY L + AR V Sbjct: 76 VARGDRVGILLPQAPETAVSHVAVYKMGGVAVPLFSLFGVEALEYRLGNCGARAVVTDAV 135 Query: 132 LLPLFAPMLGKVPTLEHLVVAGGAGEDSLA--ALLATGSEQFEAAPTRPDDHCFWLYSSG 189 A + ++P L+ ++ AGE L AL+ SE F T DD +Y+SG Sbjct: 136 GAAKIAQIRDRLPELKLVLRIDEAGEGELDWHALVDAASEDFTPVDTAADDPAVIIYTSG 195 Query: 190 STGAPKGTVHIHSDLI-HTAELYARPILGIREGDVVFSAAKLFFAYGLGNGLIFPLAVGA 248 +TG PKG +H H L+ H + L + GD +++ A + GL + L+ G Sbjct: 196 TTGQPKGALHAHRVLLGHLPGVEISHDLFPQPGDRIWTPADWAWIGGLLDVLMPAWHHGV 255 Query: 249 TAVLMA-ERPTPAAVFERLRRHQPDIFYGVPTLYASMLANPDCPKEGELRLRACTSAGEA 307 T V E+ F + Q + PT M A D +R+ S GE Sbjct: 256 TVVSHRFEKFDAEEAFRLIADFQVRNAFLPPTALKMMRAVKDPQTRWNYSMRSVASGGET 315 Query: 308 LPEDVGRRWQARFGVDILDGIGSTEMLHIFLSNRAGDV--HYGTSGKPVPGYRLRLIDED 365 L ++ + FG+ I + G TE ++ +S+ A + G G+P PG+ + +ID Sbjct: 316 LGAELLDWGRQTFGLTINEFYGQTEC-NMIVSSCATVMPPKPGVMGRPAPGHDVAVIDGQ 374 Query: 366 GAEITTAGVAGELQISGPSSAVM--YWNNPEKTAATFMGEWTRSGDKYLVNDEGYYVYAG 423 G + G G + + P + YWNNPE TAA F+G+W +GD+ ++ +GY + G Sbjct: 375 GNRLPP-GEIGLIAVHRPDPVMFLQYWNNPEATAAKFVGDWLVTGDQGELDTDGYIRFVG 433 Query: 424 RSDDMLKVSGIYVSPIEVESALIAHEAVLEAAVVGWEDEDHLIKPKAFIVLKPGYGAGEA 483 R DD++ +G + P E+E LI H AV AAVVG + KAFIVL+ G +A Sbjct: 434 RDDDVITSAGYRIGPGEIEDCLIGHPAVRMAAVVGVPNPLRTEIVKAFIVLQDGVRPSDA 493 Query: 484 LRTDLKAHVKNLLAPYKYPRWIEFVDDLPKTATGKIQRFKLR 525 L +++AHVK LA ++YPR +EFVD LP T TGKI R +LR Sbjct: 494 LAAEIQAHVKTRLAAHEYPRAVEFVDSLPMTTTGKIIRRELR 535 Lambda K H 0.319 0.138 0.412 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 750 Number of extensions: 40 Number of successful extensions: 6 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 527 Length of database: 538 Length adjustment: 35 Effective length of query: 492 Effective length of database: 503 Effective search space: 247476 Effective search space used: 247476 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory