Align Benzoate--CoA ligase; Benzoyl-CoA synthetase; EC 6.2.1.25 (characterized)
to candidate AZOBR_RS21705 AZOBR_RS21705 2-aminobenzoate-CoA ligase
Query= SwissProt::Q8GQN9 (527 letters) >FitnessBrowser__azobra:AZOBR_RS21705 Length = 545 Score = 280 bits (717), Expect = 7e-80 Identities = 185/525 (35%), Positives = 269/525 (51%), Gaps = 18/525 (3%) Query: 8 DHSNTPPAIKIPERYNAADDLIGRNLLAGRGGKTVYIDDAGSYTYDELALRVNRCGSALR 67 D S P + PER NAA L+ G + I + ++Y V+R L Sbjct: 23 DFSYDRPELTYPERLNAAAALLDVWRERGWDERPCVIGNDDVWSYGRFRDTVDRIARLLT 82 Query: 68 TTLGLQPKDRVLVCVLDGIDFPTTFLGAIKGGVVPIAINTLLTESDYEYMLTDSAARVAV 127 G+ P +RVLV + +L +K G V + LL ++ E ++ +A +A+ Sbjct: 83 ERFGIVPGNRVLVRGTNTPMLAACWLAVLKAGAVVVPTMPLLRATELESIIERAAVSLAL 142 Query: 128 V----SQELLPLFAPMLGKVPTLEHLVVAGGAGEDSLAALLATGSEQFEAAPTRPDDHCF 183 +++L M G +P VV G+ L L F T DD Sbjct: 143 CDARFAKDLNGAAESMGGGMP-----VVTFNGGD--LEGWLEETEAGFAVVDTAADDVAL 195 Query: 184 WLYSSGSTGAPKGTVHIHSDLIHTAELYARPILGIREGDVVFSAAKLFFAYGLGNGLIFP 243 ++SG+TG PK T H H DL+ A+L + +L DV L FAYG G L+FP Sbjct: 196 IAFTSGTTGKPKATAHFHRDLLAVADLSPQSLLRTGGDDVFCGTPSLAFAYGQGGMLLFP 255 Query: 244 LAVGATAVLMAERPTPAAVFERLRRHQPDIFYGVPTLYASMLANPD---CPKEGELRLRA 300 L VGA+ VL+ +R TP + E +H+ + + VPT+Y +M A + EG LRA Sbjct: 256 LRVGASVVLL-DRATPERLLEVTAKHKATVMFTVPTVYRAMTARIEEDASLAEGLRTLRA 314 Query: 301 CTSAGEALPEDVGRRWQARFGVDILDGIGSTEMLHIFLSNRAGDVHYGTSGKPVPGYRLR 360 C SAGE LP WQA G++ILD G+TEML+ L + G V G +G VPGY R Sbjct: 315 CVSAGEPLPATTLEGWQAVTGMEILDSFGTTEMLNAVLHSPPGAVRPGATGMVVPGYEAR 374 Query: 361 LIDEDGAEITTAGVAGELQISGPSSAVMYWNNPEKTAATFMGEWTRSGDKYLVNDEGYYV 420 ++D D G G L + GP+ + Y ++P + G W +GD + ++++GY+ Sbjct: 375 VVD-DSLTPLPPGQIGRLAVRGPTGCI-YLDDPRQENYV-QGGWNLTGDAFRMDEDGYFW 431 Query: 421 YAGRSDDMLKVSGIYVSPIEVESALIAHEAVLEAAVVGWEDEDHLIKPKAFIVLKPGYGA 480 Y R+DD++ +G +S +EVE L+ HEAV E AV+ D PKAFIV + G Sbjct: 432 YHARTDDLIVSAGYKISGLEVEDVLLGHEAVEECAVIAAPDPLRGSIPKAFIVTRDGVRP 491 Query: 481 GEALRTDLKAHVKNLLAPYKYPRWIEFVDDLPKTATGKIQRFKLR 525 + L L+ +VK+ +APYKYPR +EF++ LP+T TGKIQR+KLR Sbjct: 492 SDDLAERLQCYVKDRIAPYKYPRAVEFLEQLPRTETGKIQRYKLR 536 Lambda K H 0.319 0.138 0.412 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 784 Number of extensions: 42 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 527 Length of database: 545 Length adjustment: 35 Effective length of query: 492 Effective length of database: 510 Effective search space: 250920 Effective search space used: 250920 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory