Align actP-like component of L-lactate and L-malate uptake system (characterized)
to candidate AZOBR_RS19235 AZOBR_RS19235 actetate permease
Query= reanno::PV4:5209923 (572 letters) >FitnessBrowser__azobra:AZOBR_RS19235 Length = 556 Score = 171 bits (433), Expect = 7e-47 Identities = 148/541 (27%), Positives = 236/541 (43%), Gaps = 87/541 (16%) Query: 19 IGIAIWS--RAGSTKEFYVAGGGVHPVMNGMATAADWMSAASFISLAGIVSFVGYDGSVY 76 +GI W+ R S +FY AGGG+ NG+A A D+MSAA+F+ L+G+V G+DG +Y Sbjct: 53 LGITYWASKRTRSASDFYTAGGGISGFQNGLAIAGDYMSAAAFLGLSGMVFAKGFDGVIY 112 Query: 77 LMGWTGGYVLLALCMAPYLRKFGKFTVPDFIGDRYYSQAARTVAVVCAIFICFTYIAGQM 136 +G+ G+ L+ +A LR G+FT D R R++A V ++ + Y+ QM Sbjct: 113 TIGFLVGWPLMLFLIAERLRNLGRFTFADVASYRLGQTPIRSLAAVGSLTVVCFYLIAQM 172 Query: 137 RGVGVVFSRFLEVEVDTGVYIGMAVVFFYAVLGGMKGITYTQVAQYCVLIFAFMVPAIFI 196 G G + ++ V + ++ Y GGM T+ Q+ + +L+ V Sbjct: 173 VGAGKLIQLLFGLDYTYAVVMVGVLMILYVTFGGMLATTWVQIIKAVMLLGGCTV----- 227 Query: 197 SVMMTGHILPQLGFGAELVDAAGNNTGVYLLEKLDGLSAQLGFSQYTEGSKGMIDVFFIT 256 + G L Q GF E + L + + +A + + I ++ Sbjct: 228 ---LVGLALAQFGFNPERL----------LQQAVAAHAANAAILRPSAAMADPIAAVSLS 274 Query: 257 GALMFGTAGLPHVIVRFFTVPKVKDARVSAGWALVFIAIMYTTIPALAAFSRVNMIETIN 316 ALM G AGLPH+++RFFTVP K+AR S +A FI + + + V + Sbjct: 275 LALMCGPAGLPHILMRFFTVPDAKEARKSVVYATGFIGYFFILTVTIGFLAIVIV----- 329 Query: 317 GPESTGVAYETAPDWIKNWEKTGLIKWDDKNNDGKIYYAKGETNEMKIDRDIMVLATPEI 376 T AY A I N I+ +K + Sbjct: 330 ---GTNPAYLDAAGKILG-----------GGNMAAIHLSKAIGGNL-------------- 361 Query: 377 ANLPAWVIALVAAGGLAAALSTSAGLLLVISTSVSHDL----LKKNFMPDISDKQELLYA 432 + ++A A L+ AGL L +++VSHDL LKK + ++ E+ + Sbjct: 362 ------FLGFISAVAFATILAVVAGLTLAGASAVSHDLYARVLKKG---NATEASEMRVS 412 Query: 433 RIAA-ALGIVMAGYFGINPPGFVAAVVAIAFGLAASSLFPAIIMGIFSRTMNKEGAIAGM 491 R+A ALG++ + +A +V +AFGLAAS FP +I+ IF + + GA G Sbjct: 413 RLATLALGVIAITLGLLFENQNIAFMVGLAFGLAASVNFPVLILSIFWKGLTTRGAFIGG 472 Query: 492 VIGLLFSASYII--------YFKFVNPGDNNASNWLFGISP-EGIGMLGMIINFAVAFIV 542 GL+ ++++ FKF P I P E + M+I FA ++ Sbjct: 473 FAGLVSCVAFVVLGPTVWVSVFKFPAP-----------IFPYEHPALFSMVIAFATTWLF 521 Query: 543 S 543 S Sbjct: 522 S 522 Lambda K H 0.326 0.140 0.423 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 860 Number of extensions: 58 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 2 Length of query: 572 Length of database: 556 Length adjustment: 36 Effective length of query: 536 Effective length of database: 520 Effective search space: 278720 Effective search space used: 278720 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.0 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 40 (21.6 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory