Align Iron-sulfur cluster binding protein (characterized, see rationale)
to candidate AZOBR_RS01620 AZOBR_RS01620 putative oxidoreductase subunit with NAD(P)-binding domain and ferridoxin-like domain
Query= uniprot:E4PLR6 (483 letters) >lcl|FitnessBrowser__azobra:AZOBR_RS01620 AZOBR_RS01620 putative oxidoreductase subunit with NAD(P)-binding domain and ferridoxin-like domain Length = 478 Score = 349 bits (895), Expect = e-100 Identities = 196/484 (40%), Positives = 269/484 (55%), Gaps = 36/484 (7%) Query: 6 PVTELTPDFRGRAEEALADGQLRNNFRVAMDSLMTKRANAFPDADEREGLRELGNRIKAG 65 P T P+ A +AL+D +L+ +A + +R A E E LR+ G +K Sbjct: 3 PTTHAFPE---NARKALSDERLQKVLAIAPAGFVNRRKQAADRLPEFEDLRDQGRDLKNH 59 Query: 66 ALSRLPDLLEQLEQKLTENGVKVHWAETVEEANSLVHGIIEARKGSQVVKGKSMVSEEME 125 L+ L LE E K+ E G VHW T +EA + GI V KGKSM+SEE+ Sbjct: 60 VLANLDTYLEAFEGKVIEQGGHVHWCRTDQEARDAILGICRKVGAKTVTKGKSMISEEIG 119 Query: 126 MNDYLAERGVECLESDMGEYIVQLDNEKPSHIIMPAIHKNARQVSKLFH----DKLGEPE 181 +NDYL G+ +E+D+GEYI+QL E PSHII PA H + V F D + Sbjct: 120 INDYLEANGLTPIETDLGEYIIQLRREPPSHIIAPAFHLSKADVEGTFRQAHTDLPADRV 179 Query: 182 TEDVNQLIQIGRRTLRRKFMEADVGVSGVNFAIAETGTLLLVENEGNGRMSTTAPPVHIA 241 ++ LI R+ LRRKF +ADVG++G N +AETG+ ++V NEGNG ++ P VH+ Sbjct: 180 LDEPKVLIAEARQVLRRKFQQADVGITGANIMVAETGSTVIVTNEGNGDLTQILPRVHVV 239 Query: 242 VTGIEKVVPNLRDVVPLVSLLTRSALGQPITTYVNLISGPRKPDELDGPEEVHLVLLDNG 301 + I+KVVP L D ++ LL RSA GQ + Y +GPR+P +LDGPEE H+VLLDNG Sbjct: 240 IATIDKVVPTLEDAALVLRLLARSATGQEASAYTTFSTGPRRPGDLDGPEEFHVVLLDNG 299 Query: 302 RTGAFADAQMRQTLNCIRCGACMNHCPVYTRVGGHTYGEVYPGPIGKIITPHMAGLDKVP 361 R+ A + + L CIRCGACMNHCPVY VGGH YG VYPGPIG ++ P + G+ + Sbjct: 300 RS-ALLGTEFQDVLRCIRCGACMNHCPVYGSVGGHAYGWVYPGPIGSVMQPALLGVKEAG 358 Query: 362 DHPSASSLCGACGEVCPVKIPIPELLQRLRQENVKNPEQPQQVKGGGAKYSRTERWIWRG 421 P+AS+ CG C VCP++IP+P++++ R++ + QP ++ G A +W G Sbjct: 359 HLPNASTFCGRCEAVCPMRIPLPKMMRHWREKEFEQNLQPAAMRRGLA--------LW-G 409 Query: 422 WQMLNTRPALYRSFLWAATRF--RALAPKKAGP-----------WTENHSAPVPARRSLH 468 W RPALY AATR RAL G WT + P P ++ Sbjct: 410 W--FARRPALYH----AATRMAVRALGALGRGKGRFASLPLAQGWTRHRDMPAPEGKTFQ 463 Query: 469 DLAA 472 + A Sbjct: 464 QMWA 467 Lambda K H 0.317 0.135 0.403 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 598 Number of extensions: 28 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 483 Length of database: 478 Length adjustment: 34 Effective length of query: 449 Effective length of database: 444 Effective search space: 199356 Effective search space used: 199356 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.6 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory