Align Acetate uptake permease, ActP1; also takes up tellurite (characterized)
to candidate AZOBR_RS19235 AZOBR_RS19235 actetate permease
Query= TCDB::D5AU53 (551 letters) >FitnessBrowser__azobra:AZOBR_RS19235 Length = 556 Score = 788 bits (2035), Expect = 0.0 Identities = 404/553 (73%), Positives = 464/553 (83%), Gaps = 8/553 (1%) Query: 5 LLAAALAAM-----AGPALAAGEAIQGAVQQAPTNWTAIAMFLFFVVATLILTGWAARRT 59 LLAAA AA+ AGP AA AI GAV++ P N TAIAMFL FV TL +T WA++RT Sbjct: 6 LLAAASAALLPVLVAGPVHAA--AIDGAVERQPVNVTAIAMFLLFVAGTLGITYWASKRT 63 Query: 60 KSTADFYTAGGGITGFQNGLAIAGDYMSAAAFLGISGMVFAKGVDGAIYTVGFTVGWPFI 119 +S +DFYTAGGGI+GFQNGLAIAGDYMSAAAFLG+SGMVFAKG DG IYT+GF VGWP + Sbjct: 64 RSASDFYTAGGGISGFQNGLAIAGDYMSAAAFLGLSGMVFAKGFDGVIYTIGFLVGWPLM 123 Query: 120 LFLIAERLRNLGKFTFADITSFRLEQTRIRTLSALGALTVVVFYLIAQMVGAGKLIQLLF 179 LFLIAERLRNLG+FTFAD+ S+RL QT IR+L+A+G+LTVV FYLIAQMVGAGKLIQLLF Sbjct: 124 LFLIAERLRNLGRFTFADVASYRLGQTPIRSLAAVGSLTVVCFYLIAQMVGAGKLIQLLF 183 Query: 180 GLPYSYAVILVGVLMVLYVTFGGMLATTWVQIVKAVMLLSGATLLVILGLAQFGFSPERL 239 GL Y+YAV++VGVLM+LYVTFGGMLATTWVQI+KAVMLL G T+LV L LAQFGF+PERL Sbjct: 184 GLDYTYAVVMVGVLMILYVTFGGMLATTWVQIIKAVMLLGGCTVLVGLALAQFGFNPERL 243 Query: 240 MADALANHAKGAAILEPTPLVTDWVSGVSLALALMFGPAGLPHILMRFFTVPDAKEARKS 299 + A+A HA AAIL P+ + D ++ VSL+LALM GPAGLPHILMRFFTVPDAKEARKS Sbjct: 244 LQQAVAAHAANAAILRPSAAMADPIAAVSLSLALMCGPAGLPHILMRFFTVPDAKEARKS 303 Query: 300 VFYATGFVAYFFVLTTTIGFLAITLVGKNPEFLDAKG-IIGGGNMAAIHLAQAVGGNIFL 358 V YATGF+ YFF+LT TIGFLAI +VG NP +LDA G I+GGGNMAAIHL++A+GGN+FL Sbjct: 304 VVYATGFIGYFFILTVTIGFLAIVIVGTNPAYLDAAGKILGGGNMAAIHLSKAIGGNLFL 363 Query: 359 GFISAVAFATILAVVSGLALSGASAVAHDLYANVVKKGAAADKAEMRVSRIATLVLGVLA 418 GFISAVAFATILAVV+GL L+GASAV+HDLYA V+KKG A + +EMRVSR+ATL LGV+A Sbjct: 364 GFISAVAFATILAVVAGLTLAGASAVSHDLYARVLKKGNATEASEMRVSRLATLALGVIA 423 Query: 419 IVLGLMFENQNIAFMVGLAFGLAASVNFPVLLLSIFWKGMTTRGAFIGGLIGLVVSIVLV 478 I LGL+FENQNIAFMVGLAFGLAASVNFPVL+LSIFWKG+TTRGAFIGG GLV + V Sbjct: 424 ITLGLLFENQNIAFMVGLAFGLAASVNFPVLILSIFWKGLTTRGAFIGGFAGLVSCVAFV 483 Query: 479 VLGPAVWVDVFKFDTPIFPWSQYTLFSMATTFIAIWAFSVTDTSARAARDKAGYDAQFVR 538 VLGP VWV VFKF PIFP+ LFSM F W FSVTD SARAA + Y+ Q++R Sbjct: 484 VLGPTVWVSVFKFPAPIFPYEHPALFSMVIAFATTWLFSVTDRSARAAAEAKAYEYQYIR 543 Query: 539 SETGLGAAGAVAH 551 SETGLGAA A +H Sbjct: 544 SETGLGAASAASH 556 Lambda K H 0.328 0.140 0.414 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 979 Number of extensions: 47 Number of successful extensions: 2 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 551 Length of database: 556 Length adjustment: 36 Effective length of query: 515 Effective length of database: 520 Effective search space: 267800 Effective search space used: 267800 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.1 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 40 (21.8 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory