Align succinate-semialdehyde dehydrogenase (NADP+) (EC 1.2.1.79) (characterized)
to candidate AZOBR_RS09720 AZOBR_RS09720 succinate-semialdehyde dehdyrogenase
Query= BRENDA::P25526 (482 letters) >FitnessBrowser__azobra:AZOBR_RS09720 Length = 497 Score = 701 bits (1810), Expect = 0.0 Identities = 342/480 (71%), Positives = 403/480 (83%), Gaps = 1/480 (0%) Query: 3 LNDSNLFRQQALINGEWLDANNGEAIDVTNPANGDKLGSVPKMGADETRAAIDAANRALP 62 L D+ L R Q ++G W+DA++G+ ++VTNPA+G LGSVP MGADETR AI+AA RA P Sbjct: 14 LKDAELLRFQGFVDGRWIDADSGKTVEVTNPADGSVLGSVPMMGADETRRAIEAAERAWP 73 Query: 63 AWRALTAKERATILRNWFNLMMEHQDDLARLMTLEQGKPLAEAKGEISYAASFIEWFAEE 122 AWRALTAKERA LR WF+LMM +Q+D+AR+MT EQGKPLAEA+GE++YAASFIEWFAEE Sbjct: 74 AWRALTAKERAKTLRTWFDLMMANQEDIARIMTAEQGKPLAEARGEVAYAASFIEWFAEE 133 Query: 123 GKRIYGDTIPGHQADKRLIVIKQPIGVTAAITPWNFPAAMITRKAGPALAAGCTMVLKPA 182 GKR+YGDTIP H +R++V K+PIGVTAAITPWNFPAAMITRKAGPALAAGC MV+KPA Sbjct: 134 GKRVYGDTIPQHLPGRRIVVTKEPIGVTAAITPWNFPAAMITRKAGPALAAGCPMVIKPA 193 Query: 183 SQTPFSALALAELAIRAGVPAGVFNVVTGSAGAVGNELTSNPLVRKLSFTGSTEIGRQLM 242 + TP +ALA+A LA RAG+PAG+ +VVTGSA A+G E+T NP VRKL+FTGSTEIG++LM Sbjct: 194 TATPLTALAMAVLAERAGIPAGILSVVTGSARAIGGEMTGNPTVRKLTFTGSTEIGKELM 253 Query: 243 EQCAKDIKKVSLELGGNAPFIVFDDADLDKAVEGALASKFRNAGQTCVCANRLYVQDGVY 302 QCA +KKVSLELGGNAPF+VF+DADLD+AV+GA+ASK+RN GQTCVCANRL VQ GVY Sbjct: 254 AQCAGTVKKVSLELGGNAPFLVFNDADLDEAVKGAIASKYRNTGQTCVCANRLLVQSGVY 313 Query: 303 DRFAEKLQQAVSKLHIGDGL-DNGVTIGPLIDEKAVAKVEEHIADALEKGARVVCGGKAH 361 D FA KL +AV L +G GL G GPLID AV KVE+HI DA EKGARVV GGK H Sbjct: 314 DAFAAKLAEAVKALKVGPGLTTEGAQQGPLIDMAAVEKVEDHIRDATEKGARVVLGGKRH 373 Query: 362 ERGGNFFQPTILVDVPANAKVSKEETFGPLAPLFRFKDEADVIAQANDTEFGLAAYFYAR 421 E GG+FF+PTIL DV KV++EETFGP+APLFRF+ E + + AN TEFGLAAYFY+R Sbjct: 374 ELGGSFFEPTILADVTPAMKVAREETFGPVAPLFRFETEEEAVRMANATEFGLAAYFYSR 433 Query: 422 DLSRVFRVGEALEYGIVGINTGIISNEVAPFGGIKASGLGREGSKYGIEDYLEIKYMCIG 481 D+ RV+RV EALEYGIVGIN GIIS EVAPFGG+K SG+GREGSKYGIEDYLEIKY+C+G Sbjct: 434 DIGRVWRVAEALEYGIVGINEGIISTEVAPFGGMKESGIGREGSKYGIEDYLEIKYLCMG 493 Lambda K H 0.318 0.135 0.395 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 776 Number of extensions: 20 Number of successful extensions: 2 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 482 Length of database: 497 Length adjustment: 34 Effective length of query: 448 Effective length of database: 463 Effective search space: 207424 Effective search space used: 207424 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory