GapMind for catabolism of small carbon sources

 

Alignments for a candidate for gabT in Azospirillum brasilense Sp245

Align 4-aminobutyrate-2-oxoglutarate transaminase (EC 2.6.1.19) (characterized)
to candidate AZOBR_RS19025 AZOBR_RS19025 acetylornithine aminotransferase

Query= BRENDA::Q0K2K2
         (423 letters)



>FitnessBrowser__azobra:AZOBR_RS19025
          Length = 389

 Score =  200 bits (509), Expect = 5e-56
 Identities = 139/407 (34%), Positives = 198/407 (48%), Gaps = 40/407 (9%)

Query: 25  DFYADRAENATLWDVEGRAYTDFAAGIAVLNTGHRHPRVMQAIAAQLERFTHTAYQIVPY 84
           D   +R E   L+  +GR + DFAAG+AV   GH +P +++A+ AQ  +  HT+  +   
Sbjct: 13  DIVFERGEGPYLYATDGRRFLDFAAGVAVNVLGHANPYLVEALTAQAHKLWHTS-NLFRV 71

Query: 85  QGYVTLAERINALVPIQGLNKTALFT-TGAEAVENAIKIARAH------TGRPGVIAFSG 137
            G  +LA+R+           T  FT +GAEA E   K+ R +        R  +I F  
Sbjct: 72  AGQESLAKRLTEAT----FADTVFFTNSGAEAWECGAKLIRKYHYEKGDKARTRIITFEQ 127

Query: 138 AFHGRTLLGMALTGKVAPYKIGFGPFPSDIYHAPFPSALHGVSTERALQALEGLFKTDID 197
           AFHGRTL  ++   +    K GFGP        PF               LE +     D
Sbjct: 128 AFHGRTLAAVSAAQQEKLIK-GFGPLLDGFDLVPFGD-------------LEAVRNAVTD 173

Query: 198 PARVAAIIVEPVQGEGGFQAAPADFMRGLRAVCDQHGIVLIADEVQTGFGRTGKMFAMSH 257
               A I +EP+QGEGG +A   +F+RGLR +CD+HG++L  DE+Q G GRTGK+FA   
Sbjct: 174 --ETAGICLEPIQGEGGIRAGSVEFLRGLREICDEHGLLLFLDEIQCGMGRTGKLFAHEW 231

Query: 258 HDVEPDLITMAKSLAGGMPLSAVSGRAAIMDAPLPGGLGGTYAGNPLAVAAAHAVIDVIE 317
             + PD++ +AK + GG PL A             G  G TY GNPLA A  +AV+D + 
Sbjct: 232 AGITPDVMAVAKGIGGGFPLGACLATEKAASGMTAGTHGSTYGGNPLATAVGNAVLDKVL 291

Query: 318 EEKLCERSASLGQQLREHLLAQRKHCPAMAE-VRGLGSMVAAEFCDPATGQPSAEHAKRV 376
           E    +    +G  L++ L       PA+ + VRG G M+    C PA G         V
Sbjct: 292 EPGFLDHVQRIGGLLQDRLAGLVAENPAVFKGVRGKGLMLGLA-CGPAVGD--------V 342

Query: 377 QTRALEAGLVLLTCGTYGNVIRFLYPLTIPQAQFDAALAVLTQALAE 423
                  GL+ +  G   NV+R L PL I +A+ + A+A+L +   E
Sbjct: 343 VVALRANGLLSVPAG--DNVVRLLPPLNIGEAEVEEAVAILAKTAKE 387


Lambda     K      H
   0.321    0.136    0.400 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 431
Number of extensions: 22
Number of successful extensions: 4
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 423
Length of database: 389
Length adjustment: 31
Effective length of query: 392
Effective length of database: 358
Effective search space:   140336
Effective search space used:   140336
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.9 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory