GapMind for catabolism of small carbon sources

 

Alignments for a candidate for gcdG in Azospirillum brasilense Sp245

Align succinyl-CoA-glutarate CoA-transferase (EC 2.8.3.13) (characterized)
to candidate AZOBR_RS29180 AZOBR_RS29180 CoA-transferase

Query= reanno::pseudo5_N2C3_1:AO356_10845
         (406 letters)



>FitnessBrowser__azobra:AZOBR_RS29180
          Length = 413

 Score =  457 bits (1177), Expect = e-133
 Identities = 235/406 (57%), Positives = 281/406 (69%), Gaps = 2/406 (0%)

Query: 3   ALSHLRVLDLSRVLAGPWAGQILADLGADVIKVERPGNGDDTRAWGPPFLKDARGENTTE 62
           +L+ LRVLDLSRVLAGPWA QIL DLGAD+IK+E P  GDDTR+WGPP L+   G+ T +
Sbjct: 2   SLAGLRVLDLSRVLAGPWASQILGDLGADIIKIEHPEKGDDTRSWGPPNLRPTPGDRTDD 61

Query: 63  --AAYYLSANRNKQSVTIDFTRPEGQRLVRELAAKSDILIENFKVGGLAAYGLDYDSLKA 120
             +AYYLS NRNK+S+ ID  +PEG  LVR LA   D+++ENFKVGGL+ YGLDY+SLK 
Sbjct: 62  PPSAYYLSCNRNKRSLAIDIAKPEGAALVRRLARSCDVVLENFKVGGLSRYGLDYESLKR 121

Query: 121 INPQLIYCSITGFGQTGPYAKRAGYDFMIQGLGGLMSLTGRPEGDEGAGPVKVGVALTDI 180
            NP L+YCSITGFGQTGPYA R GYDF+IQG+ GLMS+TG+PEG  G+ P+KVGV ++D+
Sbjct: 122 ENPALVYCSITGFGQTGPYAPRGGYDFLIQGMSGLMSVTGQPEGAPGSEPLKVGVPVSDL 181

Query: 181 LTGLYSTAAILAALAHRDHVGGGQHIDMALLDVQVACLANQAMNYLTTGNAPKRLGNAHP 240
            TGLY+T A+LAAL HRD  G GQHID ALLD QVA LANQ MN+L  G  PKRLGN HP
Sbjct: 182 FTGLYATIAVLAALRHRDRAGEGQHIDCALLDTQVAVLANQGMNWLVGGQVPKRLGNGHP 241

Query: 241 NIVPYQDFPTADGDFILTVGNDGQFRKFAEVAGQPQWADDPRFATNKVRVANRAVLIPLI 300
           N+VPY+ F TADG  I+ VGNDGQFR    +  +     D RFA+N  R A+RA L   +
Sbjct: 242 NVVPYRCFATADGHIIVAVGNDGQFRALCRLLNREDLLADERFASNPGRQAHRAELEATL 301

Query: 301 RQATVFKTTAEWVTQLEQAGVPCGPINDLAQVFADPQVQARGLAMELPHLLAGKVPQVAS 360
             +    T+A+ +  L   GVP GPIN + QVF DPQV ARGL   L       VP V  
Sbjct: 302 ADSMARWTSADLIEALSGGGVPAGPINRIDQVFDDPQVVARGLVHRLETPGGTPVPIVGF 361

Query: 361 PIRLSETPVEYRNAPPLLGEHTLEVLQRVLGLDEAAVMAFREAGVL 406
           P RLS TP  YR  PP LGE T EVL  +L L    +   R  GV+
Sbjct: 362 PARLSRTPACYRRVPPRLGEQTDEVLSDLLDLTGNELEELRAGGVI 407


Lambda     K      H
   0.319    0.137    0.408 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 604
Number of extensions: 21
Number of successful extensions: 2
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 406
Length of database: 413
Length adjustment: 31
Effective length of query: 375
Effective length of database: 382
Effective search space:   143250
Effective search space used:   143250
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.7 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory