Align succinate-semialdehyde dehydrogenase (NADP+) (EC 1.2.1.79) (characterized)
to candidate AZOBR_RS19635 AZOBR_RS19635 succinate-semialdehyde dehydrogenase
Query= BRENDA::P25526 (482 letters) >FitnessBrowser__azobra:AZOBR_RS19635 Length = 485 Score = 680 bits (1755), Expect = 0.0 Identities = 334/483 (69%), Positives = 399/483 (82%), Gaps = 1/483 (0%) Query: 1 MKLNDSNLFRQQALINGEWLDANNGEAIDVTNPANGDKLGSVPKMGADETRAAIDAANRA 60 + LND +L R QA +NG W DA +G+ VTNPA G++L V +GA+ETR AI+AA+ A Sbjct: 1 LSLNDQSLLRTQAYVNGVWRDAFSGKTFAVTNPATGEELAQVADVGAEETRQAINAADAA 60 Query: 61 LPAWRALTAKERATILRNWFNLMMEHQDDLARLMTLEQGKPLAEAKGEISYAASFIEWFA 120 LPAWRA TAKERA ILR WF L+M Q+DLA LMTLEQGKPLAEA+GE++Y ASFIEWFA Sbjct: 61 LPAWRAKTAKERAAILRRWFELIMAAQEDLAVLMTLEQGKPLAEARGEVAYGASFIEWFA 120 Query: 121 EEGKRIYGDTIPGHQADKRLIVIKQPIGVTAAITPWNFPAAMITRKAGPALAAGCTMVLK 180 EEGKR+YGD IP +KR++V+K+PIGV AAITPWNFP AMITRK GPALAAGCT+V+K Sbjct: 121 EEGKRVYGDVIPSFAGNKRIVVLKEPIGVVAAITPWNFPNAMITRKVGPALAAGCTIVVK 180 Query: 181 PASQTPFSALALAELAIRAGVPAGVFNVVTGSAG-AVGNELTSNPLVRKLSFTGSTEIGR 239 PA TP SALALAELA RAGVPAGVFN+VTGS A+G ELT++P+VRKLSFTGSTE+G+ Sbjct: 181 PAEDTPLSALALAELAERAGVPAGVFNIVTGSDPVAIGGELTASPIVRKLSFTGSTEVGK 240 Query: 240 QLMEQCAKDIKKVSLELGGNAPFIVFDDADLDKAVEGALASKFRNAGQTCVCANRLYVQD 299 LM Q A +KKVSLELGGNAPFIVFDDADLD+AV+GALASK+RN+GQTCVCANRL VQ Sbjct: 241 ILMRQSADTVKKVSLELGGNAPFIVFDDADLDEAVKGALASKYRNSGQTCVCANRLLVQA 300 Query: 300 GVYDRFAEKLQQAVSKLHIGDGLDNGVTIGPLIDEKAVAKVEEHIADALEKGARVVCGGK 359 GVYD FA KL +AV ++ +G+G++ GVT GP+I+ +AV KVEE + DAL KGA+V GGK Sbjct: 301 GVYDAFAAKLAEAVKQIRVGNGMEAGVTQGPMINGQAVEKVEELMGDALAKGAKVALGGK 360 Query: 360 AHERGGNFFQPTILVDVPANAKVSKEETFGPLAPLFRFKDEADVIAQANDTEFGLAAYFY 419 H GG FF+PTIL V +V++EE FGP+APLF+F+ EAD I ANDTEFGLAAYFY Sbjct: 361 RHGLGGTFFEPTILTGVTTEMRVAREEIFGPVAPLFKFETEADAIRMANDTEFGLAAYFY 420 Query: 420 ARDLSRVFRVGEALEYGIVGINTGIISNEVAPFGGIKASGLGREGSKYGIEDYLEIKYMC 479 +RD+ RV+RV E LEYG+VGIN GI+S EVAPFGGIK SG+GREGSKYG+ED+LEIKY+C Sbjct: 421 SRDIGRVWRVAEQLEYGMVGINEGILSTEVAPFGGIKQSGIGREGSKYGVEDFLEIKYLC 480 Query: 480 IGL 482 +GL Sbjct: 481 VGL 483 Lambda K H 0.318 0.135 0.395 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 743 Number of extensions: 19 Number of successful extensions: 2 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 482 Length of database: 485 Length adjustment: 34 Effective length of query: 448 Effective length of database: 451 Effective search space: 202048 Effective search space used: 202048 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory