Align 4-guanidinobutyraldehyde dehydrogenase (EC 1.2.1.54) (characterized)
to candidate AZOBR_RS19635 AZOBR_RS19635 succinate-semialdehyde dehydrogenase
Query= metacyc::MONOMER-11560 (497 letters) >FitnessBrowser__azobra:AZOBR_RS19635 Length = 485 Score = 316 bits (810), Expect = 1e-90 Identities = 186/479 (38%), Positives = 280/479 (58%), Gaps = 9/479 (1%) Query: 15 QLKIEGRAFINGEYTDAVSGETFECLSPVDGRFLAKVASCDLADANRAVENARATFNSGV 74 Q + +A++NG + DA SG+TF +P G LA+VA + +A+ A A + Sbjct: 6 QSLLRTQAYVNGVWRDAFSGKTFAVTNPATGEELAQVADVGAEETRQAINAADAALPA-- 63 Query: 75 WSQLAPAKRKAKLIRFADLLRKNVEELALLETLDMGKPIGDSSSIDIPGAAQAIHWTAEA 134 W +R A L R+ +L+ E+LA+L TL+ GKP+ ++ ++ A I W AE Sbjct: 64 WRAKTAKERAAILRRWFELIMAAQEDLAVLMTLEQGKPLAEARG-EVAYGASFIEWFAEE 122 Query: 135 IDKVYDEVAPT-PHDQLGLVTREPVGVVGAIVPWNFPLLMACWKLGPALATGNSVVLKPS 193 +VY +V P+ ++ +V +EP+GVV AI PWNFP M K+GPALA G ++V+KP+ Sbjct: 123 GKRVYGDVIPSFAGNKRIVVLKEPIGVVAAITPWNFPNAMITRKVGPALAAGCTIVVKPA 182 Query: 194 EKSPLTAIRIAQLAIEAGIPAGVLNVLPGYGHT-VGKALALHMDVDTLVFTGSTKIAKQL 252 E +PL+A+ +A+LA AG+PAGV N++ G +G L V L FTGST++ K L Sbjct: 183 EDTPLSALALAELAERAGVPAGVFNIVTGSDPVAIGGELTASPIVRKLSFTGSTEVGKIL 242 Query: 253 MVYAGESNMKRIWLEAGGKSPNIVFADAPDLQAAAEAAASAIAFNQGEVCTAGSRLLVER 312 M + ++ +K++ LE GG +P IVF DA DL A + A ++ N G+ C +RLLV+ Sbjct: 243 MRQSADT-VKKVSLELGGNAPFIVFDDA-DLDEAVKGALASKYRNSGQTCVCANRLLVQA 300 Query: 313 SIKDKFLPMVVEALKGWKPGNPLDPQTTVGALVDTQQMNTVLSYIEAGHKDGAKLLAGGK 372 + D F + EA+K + GN ++ T G +++ Q + V + GAK+ GGK Sbjct: 301 GVYDAFAAKLAEAVKQIRVGNGMEAGVTQGPMINGQAVEKVEELMGDALAKGAKVALGGK 360 Query: 373 RTLEETGGTYVEPTIFDGVTNAMRIAQEEIFGPVLSVIAFDTAEEAVAIANDTPYGLAAG 432 R GGT+ EPTI GVT MR+A+EEIFGPV + F+T +A+ +ANDT +GLAA Sbjct: 361 R--HGLGGTFFEPTILTGVTTEMRVAREEIFGPVAPLFKFETEADAIRMANDTEFGLAAY 418 Query: 433 IWTSDISKAHKTARAVRAGSVWVNQYDGGDMTAPFGGFKQSGNGRDKSLHALEKYTELK 491 ++ DI + + A + G V +N+ APFGG KQSG GR+ S + +E + E+K Sbjct: 419 FYSRDIGRVWRVAEQLEYGMVGINEGILSTEVAPFGGIKQSGIGREGSKYGVEDFLEIK 477 Lambda K H 0.316 0.132 0.390 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 613 Number of extensions: 34 Number of successful extensions: 7 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 497 Length of database: 485 Length adjustment: 34 Effective length of query: 463 Effective length of database: 451 Effective search space: 208813 Effective search space used: 208813 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.6 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory