Align deoxynucleoside transporter, ATPase component (characterized)
to candidate AZOBR_RS31245 AZOBR_RS31245 ABC transporter ATP-binding protein
Query= reanno::Burk376:H281DRAFT_01113 (515 letters) >FitnessBrowser__azobra:AZOBR_RS31245 Length = 518 Score = 302 bits (773), Expect = 2e-86 Identities = 191/516 (37%), Positives = 296/516 (57%), Gaps = 26/516 (5%) Query: 11 LSQPFLEVVGVHKRFTGVHALRGVSLSFQRGQIYHLLGENGCGKSTLIKIISGAQPPD-- 68 L+ P LE+ G+ K F GV AL V+LS + G+I+ L+GENG GKSTL+K++SG P Sbjct: 1 LAMPILEMKGITKTFPGVKALDDVNLSVREGEIHALIGENGAGKSTLMKVLSGVYPQGSF 60 Query: 69 EGQLVIEGVPHARLSALEALAAGIETVYQDLSLLPNMSVAENVALTSELATHEGRLARTF 128 +G++ G P A ++ GI ++Q+L+L+P +S+ EN+ L +E A+ Sbjct: 61 DGEIRFRGQPQAFRGIADSERLGIIIIHQELALVPLLSITENLFLGNEQAS--------- 111 Query: 129 DRRVLAATAA--RALEAVGLPGNSEFQSTLIEQLPLATRQLVAIARAIASEAKFVIMDEP 186 R V+ AA RA E + L G + TLI + + +QLV IA+A++ E K +I+DEP Sbjct: 112 -RGVIDWDAATLRARELLRLVGLHDPPETLITDIGVGKQQLVEIAKALSKEVKLLILDEP 170 Query: 187 TTSLTQKEVDNLIAVLANLRAQGVTVLFVSHKLDECYAIGGEVIVLRDGQKMAQGPIAEF 246 T SL + + D L+ +L +A+G+ + +SHKL+E + V +LRDG + E Sbjct: 171 TASLNESDSDALLELLLQFKARGIASILISHKLNEIAKVADRVTILRDGTTVETLDCREA 230 Query: 247 TKAQ--ISELMTGRHLSNERYRESAHAQDIVLDVRGFT-----RAGQ--FSDVSFKLHGG 297 +Q I M GR LS+ R + D++ +V+G++ G+ DV+ + G Sbjct: 231 VVSQDRIIRGMVGRALSDRYPRRTTVPGDVLFEVKGWSADHPAHPGRRVVRDVNLTVRRG 290 Query: 298 EILGVTGLLDSGRNELARALAGVAPAQS--GDVLLDGQQIALRTPSDAKRHRIGYVPEDR 355 E++G+ GL+ +GR E A +L G + ++ G LDG++I + T S A + + Y EDR Sbjct: 291 EVVGIAGLMGAGRTEFAMSLFGRSYGRNIRGQAFLDGREIDVSTISRAMANGLAYATEDR 350 Query: 356 LNEGLFLDKPIRDNVITAMISSLRDRFGQIDRTRAQALAEQTVKELQIATPGVDKPVQSL 415 + GL LD IR NV A + + R+ ID R +AE+ + L+I V + +L Sbjct: 351 KHLGLVLDNDIRHNVTLANLRGVAKRW-VIDHEREVQVAEEFRRRLRIRCADVFQETVNL 409 Query: 416 SGGNQQRVLIGRWLAIDPRVLILHGPTVGVDVGSKDIIYRIMQRLSQRGIGIILISDDLP 475 SGGNQQ+V++ +WL DP+VLIL PT G+DVG+K IY I+ +L G G++LIS ++P Sbjct: 410 SGGNQQKVVLSKWLFADPQVLILDEPTRGIDVGAKYEIYTIINQLVAEGRGVVLISSEMP 469 Query: 476 ELLQNCDRILMMKKGHVSAEYRADELSEADLYHALL 511 ELL DRI +M G + AE A E S+ + A++ Sbjct: 470 ELLGVADRIYVMNAGEMVAEMPAAEASQEKIMGAIM 505 Lambda K H 0.319 0.135 0.376 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 598 Number of extensions: 31 Number of successful extensions: 11 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 515 Length of database: 518 Length adjustment: 35 Effective length of query: 480 Effective length of database: 483 Effective search space: 231840 Effective search space used: 231840 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory