Align aldehyde dehydrogenase (NAD+) (EC 1.2.1.3) (characterized)
to candidate AZOBR_RS09720 AZOBR_RS09720 succinate-semialdehyde dehdyrogenase
Query= BRENDA::P51650 (523 letters) >FitnessBrowser__azobra:AZOBR_RS09720 Length = 497 Score = 546 bits (1408), Expect = e-160 Identities = 270/483 (55%), Positives = 362/483 (74%), Gaps = 7/483 (1%) Query: 44 ADLLRGDSFVGGRWLPTPA--TFPVYDPASGAKLGTVADCGVPEARAAVRAAYDAFSSWK 101 A+LLR FV GRW+ + T V +PA G+ LG+V G E R A+ AA A+ +W+ Sbjct: 17 AELLRFQGFVDGRWIDADSGKTVEVTNPADGSVLGSVPMMGADETRRAIEAAERAWPAWR 76 Query: 102 EISVKERSSLLRKWYDLMIQNKDELAKIITAESGKPLKEAQGEILYSAFFLEWFSEEARR 161 ++ KER+ LR W+DLM+ N++++A+I+TAE GKPL EA+GE+ Y+A F+EWF+EE +R Sbjct: 77 ALTAKERAKTLRTWFDLMMANQEDIARIMTAEQGKPLAEARGEVAYAASFIEWFAEEGKR 136 Query: 162 VYGDIIYTSAKDKRGLVLKQPVGVASIITPWNFPSAMITRKVGAALAAGCTVVVKPAEDT 221 VYGD I +R +V K+P+GV + ITPWNFP+AMITRK G ALAAGC +V+KPA T Sbjct: 137 VYGDTIPQHLPGRRIVVTKEPIGVTAAITPWNFPAAMITRKAGPALAAGCPMVIKPATAT 196 Query: 222 PYSALALAQLANQAGIPPGVYNVIPCSRTKAKEVGEVLCTDPLVSKISFTGSTATGKILL 281 P +ALA+A LA +AGIP G+ +V+ S A+ +G + +P V K++FTGST GK L+ Sbjct: 197 PLTALAMAVLAERAGIPAGILSVVTGS---ARAIGGEMTGNPTVRKLTFTGSTEIGKELM 253 Query: 282 HHAANSVKRVSMELGGLAPFIVFDSANVDQAVAGAMASKFRNAGQTCVCSNRFLVQRGIH 341 A +VK+VS+ELGG APF+VF+ A++D+AV GA+ASK+RN GQTCVC+NR LVQ G++ Sbjct: 254 AQCAGTVKKVSLELGGNAPFLVFNDADLDEAVKGAIASKYRNTGQTCVCANRLLVQSGVY 313 Query: 342 DSFVTKFAEAMKKSLRVGNGFE-EGTTQGPLINEKAVEKVEKHVNDAVAKGATVVTGGKR 400 D+F K AEA+K +L+VG G EG QGPLI+ AVEKVE H+ DA KGA VV GGKR Sbjct: 314 DAFAAKLAEAVK-ALKVGPGLTTEGAQQGPLIDMAAVEKVEDHIRDATEKGARVVLGGKR 372 Query: 401 HQSGGNFFEPTLLSNVTRDMLCITEETFGPVAPVIKFDKEEEAVAIANAADVGLAGYFYS 460 H+ GG+FFEPT+L++VT M EETFGPVAP+ +F+ EEEAV +ANA + GLA YFYS Sbjct: 373 HELGGSFFEPTILADVTPAMKVAREETFGPVAPLFRFETEEEAVRMANATEFGLAAYFYS 432 Query: 461 QDPAQIWRVAEQLEVGMVGVNEGLISSVECPFGGVKQSGLGREGSKYGIDEYLEVKYVCY 520 +D ++WRVAE LE G+VG+NEG+IS+ PFGG+K+SG+GREGSKYGI++YLE+KY+C Sbjct: 433 RDIGRVWRVAEALEYGIVGINEGIISTEVAPFGGMKESGIGREGSKYGIEDYLEIKYLCM 492 Query: 521 GGL 523 GG+ Sbjct: 493 GGI 495 Lambda K H 0.318 0.135 0.400 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 676 Number of extensions: 20 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 523 Length of database: 497 Length adjustment: 34 Effective length of query: 489 Effective length of database: 463 Effective search space: 226407 Effective search space used: 226407 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory