Align ABC-type sugar transport system, ATP-binding protein; EC 3.6.3.17 (characterized, see rationale)
to candidate AZOBR_RS31210 AZOBR_RS31210 sugar ABC transporter ATP-binding protein
Query= uniprot:A0A0C4Y5F6 (540 letters) >FitnessBrowser__azobra:AZOBR_RS31210 Length = 516 Score = 362 bits (930), Expect = e-104 Identities = 219/526 (41%), Positives = 304/526 (57%), Gaps = 17/526 (3%) Query: 1 MSDMSDTSTKAPLLALRNICKTFPGVRALRKVELTAYAGEVHALMGENGAGKSTLMKILS 60 M+D + T++ PLLA+R + K F GV+AL V+ T GE+HAL+GENGAGKSTL+K L+ Sbjct: 1 MTDPTPTASP-PLLAIRGLSKAFLGVQALDGVDFTVRHGEIHALLGENGAGKSTLIKTLT 59 Query: 61 GAYTADPGGECHIDGQRVQIDGPQSARDLGVAVIYQELSLAPNLSVAENIYLGRALQRRG 120 G Y D G ++G+ + G + A+ L + +YQE++L PNLSVAEN++LGR R G Sbjct: 60 GVYQRD-AGTVTLEGRAIAPRGVEEAQRLHIGTVYQEVNLLPNLSVAENLFLGRQPMRFG 118 Query: 121 LVARGDMVRACAPTLARLGADFSPAANVASLSIAQRQLVEIARAVHFEARILVMDEPTTP 180 LV RG M R L G A + S+A +Q+V IARAV A++L++DEPT Sbjct: 119 LVDRGAMRRRARAVLIPYGLTLDVTAPLGRFSVATQQIVAIARAVDMSAKVLILDEPTAS 178 Query: 181 LSTHETDRLFALIRQLRGEGMAILYISHRMAEIDELADRVTVLRDGCFVGTLDRAHLSQA 240 L E LF ++R LR G+ I++++H + ++ L DR+TVLR+G VG A L + Sbjct: 179 LDAQEVAVLFKVMRTLRSRGIGIVFVTHFLDQVYALCDRITVLRNGRLVGERRTAELPRL 238 Query: 241 ALVKMMVGRDLSGFYTKTHGQAVE-----REVMLSVRDVADGRRVKGCSFDLRAGEVLGL 295 LV MM+GR+L + A + R ++ R R V+ D+R GEV+GL Sbjct: 239 DLVAMMLGRELEAVAHRIAPPADDAEEDARPPLVRFRGYGKARSVEPFDLDIRPGEVVGL 298 Query: 296 AGLVGAGRTELARLVFGADARTRGEVRIANPAGSGGLVTLPAGGPRQAIDAGIAYLTEDR 355 AGL+G+GRTE ARLVFG D RGE + A + GPR AI G + EDR Sbjct: 299 AGLLGSGRTETARLVFGMDRADRGEAAVDGQA-------VRLRGPRDAIRLGFGFCPEDR 351 Query: 356 KLQGLFLDQSVHENINLIVAARDALGLGRLNRTAARRRTTEAIDTLGIRVAHAQVNVGAL 415 K +G+ SV ENI L + AR L + R I L IR HA+ + L Sbjct: 352 KKEGIVGALSVRENIILALQARQG-WLRPIPRCRQEEIADRFIRLLDIRTPHAEQPIQLL 410 Query: 416 SGGNQQKVMLSRLLEIQPRVLILDEPTRGVDIGAKSEIYRLINALAQSGVAILMISSELP 475 SGGNQQK +L+R L +PR+LILDEPTRG+D+GA +EI RLI L G+A+L++SSEL Sbjct: 411 SGGNQQKALLARWLATEPRLLILDEPTRGIDVGAHAEIIRLIERLCADGMALLVVSSELE 470 Query: 476 EVVGLCDRVLVMREGTLAGEVRPAGSAAETQERIIALATGAAAAAP 521 E+V RV+V+R+ E+R G + A+A+ + P Sbjct: 471 EIVAYSRRVVVLRDRRHVAELR--GGEVAVDRIVAAIASESVPEEP 514 Lambda K H 0.320 0.136 0.382 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 690 Number of extensions: 37 Number of successful extensions: 9 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 540 Length of database: 516 Length adjustment: 35 Effective length of query: 505 Effective length of database: 481 Effective search space: 242905 Effective search space used: 242905 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory