Align ABC transporter related; Flags: Precursor (characterized, see rationale)
to candidate AZOBR_RS31210 AZOBR_RS31210 sugar ABC transporter ATP-binding protein
Query= uniprot:B2T9V9 (510 letters) >FitnessBrowser__azobra:AZOBR_RS31210 Length = 516 Score = 293 bits (749), Expect = 1e-83 Identities = 188/508 (37%), Positives = 273/508 (53%), Gaps = 7/508 (1%) Query: 9 TSSVPVVEALEVTKRFGSTAALNDVSIRVMPGESHALVGRNGAGKSTLVSILTGLRKPDT 68 T+S P++ ++K F AL+ V V GE HAL+G NGAGKSTL+ LTG+ + D Sbjct: 7 TASPPLLAIRGLSKAFLGVQALDGVDFTVRHGEIHALLGENGAGKSTLIKTLTGVYQRDA 66 Query: 69 GEVRFSGAAAPSIADRDAWRERVACVYQHSTIIRDLSVAENLFINRQPLRGGVIDWQAMR 128 G V G A +A R + VYQ ++ +LSVAENLF+ RQP+R G++D AMR Sbjct: 67 GTVTLEGRAIAPRGVEEAQRLHIGTVYQEVNLLPNLSVAENLFLGRQPMRFGLVDRGAMR 126 Query: 129 RDARALLDHWKIDVREDARAGDLSVEARQLVEIARALSYGARFIILDEPTAQLDGDEIKR 188 R ARA+L + + + A G SV +Q+V IARA+ A+ +ILDEPTA LD E+ Sbjct: 127 RRARAVLIPYGLTLDVTAPLGRFSVATQQIVAIARAVDMSAKVLILDEPTASLDAQEVAV 186 Query: 189 LFRRISELQREGVTFLFISHHLQEVYEICQAVTVLRDARHIVSAPVSALPREQLIEAMTG 248 LF+ + L+ G+ +F++H L +VY +C +TVLR+ R + + LPR L+ M G Sbjct: 187 LFKVMRTLRSRGIGIVFVTHFLDQVYALCDRITVLRNGRLVGERRTAELPRLDLVAMMLG 246 Query: 249 ERGGLAVADAAARGALPADTAVALELKELTG----ADYEGVSFTVKRGEVVGLTGATSSG 304 R AVA A A A+ L G E ++ GEVVGL G SG Sbjct: 247 -RELEAVAHRIAPPADDAEEDARPPLVRFRGYGKARSVEPFDLDIRPGEVVGLAGLLGSG 305 Query: 305 RTSVAEAIAGLRAAKRGTISVDGAILPPGDVPASLAHGIGCVPKDRHHEGLVLTQSVAEN 364 RT A + G+ A RG +VDG + ++ G G P+DR EG+V SV EN Sbjct: 306 RTETARLVFGMDRADRGEAAVDGQAVRLRGPRDAIRLGFGFCPEDRKKEGIVGALSVREN 365 Query: 365 ASMTIARVLGKFGIAAPAKKNAFGQKMIDALGIVAQGPEHVVSGLSGGNQQKVVMARALA 424 + + G ++ + I L I E + LSGGNQQK ++AR LA Sbjct: 366 IILALQARQGWLRPIPRCRQEEIADRFIRLLDIRTPHAEQPIQLLSGGNQQKALLARWLA 425 Query: 425 TNPNVLVLIDPTAGVDVKSKEALLSVVDRVREEGKAVLVVSGELDDLRTCDRVLVMFRG- 483 T P +L+L +PT G+DV + ++ +++R+ +G A+LVVS EL+++ R +V+ R Sbjct: 426 TEPRLLILDEPTRGIDVGAHAEIIRLIERLCADGMALLVVSSELEEIVAYSRRVVVLRDR 485 Query: 484 RVAAEFPAGWQDHD-LIASVEGVSLHEE 510 R AE G D ++A++ S+ EE Sbjct: 486 RHVAELRGGEVAVDRIVAAIASESVPEE 513 Lambda K H 0.318 0.134 0.377 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 611 Number of extensions: 33 Number of successful extensions: 8 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 510 Length of database: 516 Length adjustment: 35 Effective length of query: 475 Effective length of database: 481 Effective search space: 228475 Effective search space used: 228475 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory