Align Ribose import ATP-binding protein RbsA; EC 7.5.2.7 (characterized, see rationale)
to candidate AZOBR_RS31210 AZOBR_RS31210 sugar ABC transporter ATP-binding protein
Query= uniprot:D8J111 (520 letters) >FitnessBrowser__azobra:AZOBR_RS31210 Length = 516 Score = 384 bits (986), Expect = e-111 Identities = 200/498 (40%), Positives = 320/498 (64%), Gaps = 8/498 (1%) Query: 17 SSSVPVIALRNVCKRFPGVLALDNCQFELAAGEVHALMGENGAGKSTLMKILSGVYQRDS 76 ++S P++A+R + K F GV ALD F + GE+HAL+GENGAGKSTL+K L+GVYQRD+ Sbjct: 7 TASPPLLAIRGLSKAFLGVQALDGVDFTVRHGEIHALLGENGAGKSTLIKTLTGVYQRDA 66 Query: 77 GDILLDGKPVEITEPRQAQALGIGIIHQELNLMNHLSAAQNIFIGREPRKAMGLFIDEDE 136 G + L+G+ + +AQ L IG ++QE+NL+ +LS A+N+F+GR+P + GL +D Sbjct: 67 GTVTLEGRAIAPRGVEEAQRLHIGTVYQEVNLLPNLSVAENLFLGRQPMR-FGL-VDRGA 124 Query: 137 LNRQAAAIFARMRLDMDPSTPVGELTVARQQMVEIAKALSFDSRVLIMDEPTAALNNAEI 196 + R+A A+ L +D + P+G +VA QQ+V IA+A+ ++VLI+DEPTA+L+ E+ Sbjct: 125 MRRRARAVLIPYGLTLDVTAPLGRFSVATQQIVAIARAVDMSAKVLILDEPTASLDAQEV 184 Query: 197 AELFRIIRDLQAQGVGIVYISHKMDELRQIADRVSVMRDGKYIATVPMQETSMDTIISMM 256 A LF+++R L+++G+GIV+++H +D++ + DR++V+R+G+ + E +++MM Sbjct: 185 AVLFKVMRTLRSRGIGIVFVTHFLDQVYALCDRITVLRNGRLVGERRTAELPRLDLVAMM 244 Query: 257 VGRALDG-EQRI--PPDTSRNDV---VLEVRGLNRGRAIRDVSFTLRKGEILGFAGLMGA 310 +GR L+ RI P D + D ++ RG + R++ +R GE++G AGL+G+ Sbjct: 245 LGRELEAVAHRIAPPADDAEEDARPPLVRFRGYGKARSVEPFDLDIRPGEVVGLAGLLGS 304 Query: 311 GRTEVARAIFGADPLEAGEIIIHGGKAVIKSPADAVAHGIGYLSEDRKHFGLAVGMDVQA 370 GRTE AR +FG D + GE + G ++ P DA+ G G+ EDRK G+ + V+ Sbjct: 305 GRTETARLVFGMDRADRGEAAVDGQAVRLRGPRDAIRLGFGFCPEDRKKEGIVGALSVRE 364 Query: 371 NIALSSMGRFTRVGFMDQRAIREAAQMYVRQLAIKTPSVEQQARLLSGGNQQKIVIAKWL 430 NI L+ R + + + E A ++R L I+TP EQ +LLSGGNQQK ++A+WL Sbjct: 365 NIILALQARQGWLRPIPRCRQEEIADRFIRLLDIRTPHAEQPIQLLSGGNQQKALLARWL 424 Query: 431 LRDCDILFFDEPTRGIDVGAKSEIYKLLDALAEQGKAIVMISSELPEVLRMSHRVLVMCE 490 + +L DEPTRGIDVGA +EI +L++ L G A++++SSEL E++ S RV+V+ + Sbjct: 425 ATEPRLLILDEPTRGIDVGAHAEIIRLIERLCADGMALLVVSSELEEIVAYSRRVVVLRD 484 Query: 491 GRITGELARADATQEKIM 508 R EL + ++I+ Sbjct: 485 RRHVAELRGGEVAVDRIV 502 Score = 94.4 bits (233), Expect = 9e-24 Identities = 68/261 (26%), Positives = 131/261 (50%), Gaps = 16/261 (6%) Query: 14 ASSSSSVPVIALRNVCKRFPGVLALDNCQFELAAGEVHALMGENGAGKSTLMKILSGVYQ 73 A + P++ R K +++ ++ GEV L G G+G++ +++ G+ + Sbjct: 263 AEEDARPPLVRFRGYGK----ARSVEPFDLDIRPGEVVGLAGLLGSGRTETARLVFGMDR 318 Query: 74 RDSGDILLDGKPVEITEPRQAQALGIGIIHQELN---LMNHLSAAQNIFIGREPRKAMGL 130 D G+ +DG+ V + PR A LG G ++ ++ LS +NI + + R+ Sbjct: 319 ADRGEAAVDGQAVRLRGPRDAIRLGFGFCPEDRKKEGIVGALSVRENIILALQARQGWLR 378 Query: 131 FIDEDELNRQAAAIFARMRLDMDPSTPVGE-----LTVARQQMVEIAKALSFDSRVLIMD 185 I + A F R+ +D TP E L+ QQ +A+ L+ + R+LI+D Sbjct: 379 PIPRCR-QEEIADRFIRL---LDIRTPHAEQPIQLLSGGNQQKALLARWLATEPRLLILD 434 Query: 186 EPTAALNNAEIAELFRIIRDLQAQGVGIVYISHKMDELRQIADRVSVMRDGKYIATVPMQ 245 EPT ++ AE+ R+I L A G+ ++ +S +++E+ + RV V+RD +++A + Sbjct: 435 EPTRGIDVGAHAEIIRLIERLCADGMALLVVSSELEEIVAYSRRVVVLRDRRHVAELRGG 494 Query: 246 ETSMDTIISMMVGRALDGEQR 266 E ++D I++ + ++ E R Sbjct: 495 EVAVDRIVAAIASESVPEEPR 515 Score = 83.2 bits (204), Expect = 2e-20 Identities = 63/251 (25%), Positives = 116/251 (46%), Gaps = 10/251 (3%) Query: 269 PDTSRNDVVLEVRGLNRG----RAIRDVSFTLRKGEILGFAGLMGAGRTEVARAIFGADP 324 P + + +L +RGL++ +A+ V FT+R GEI G GAG++ + + + G Sbjct: 4 PTPTASPPLLAIRGLSKAFLGVQALDGVDFTVRHGEIHALLGENGAGKSTLIKTLTGVYQ 63 Query: 325 LEAGEIIIHGGKAVIKSPADAVAHGIGYLSEDRKHFGLAVGMDVQANIALSSMGRFTRVG 384 +AG + + G + +A IG + ++ L + V N+ L R G Sbjct: 64 RDAGTVTLEGRAIAPRGVEEAQRLHIGTVYQE---VNLLPNLSVAENLFLGRQPM--RFG 118 Query: 385 FMDQRAIREAAQMYVRQLAIKTPSVEQQARLLSGGNQQKIVIAKWLLRDCDILFFDEPTR 444 +D+ A+R A+ + + T V S QQ + IA+ + +L DEPT Sbjct: 119 LVDRGAMRRRARAVLIPYGL-TLDVTAPLGRFSVATQQIVAIARAVDMSAKVLILDEPTA 177 Query: 445 GIDVGAKSEIYKLLDALAEQGKAIVMISSELPEVLRMSHRVLVMCEGRITGELARADATQ 504 +D + ++K++ L +G IV ++ L +V + R+ V+ GR+ GE A+ + Sbjct: 178 SLDAQEVAVLFKVMRTLRSRGIGIVFVTHFLDQVYALCDRITVLRNGRLVGERRTAELPR 237 Query: 505 EKIMQLATQRE 515 ++ + RE Sbjct: 238 LDLVAMMLGRE 248 Lambda K H 0.320 0.135 0.372 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 671 Number of extensions: 38 Number of successful extensions: 8 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 3 Number of HSP's successfully gapped: 3 Length of query: 520 Length of database: 516 Length adjustment: 35 Effective length of query: 485 Effective length of database: 481 Effective search space: 233285 Effective search space used: 233285 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory