Align 2-ketoglutaric semialdehyde dehydrogenase (EC 1.2.1.26) (characterized)
to candidate AZOBR_RS29750 AZOBR_RS29750 aldehyde dehydrogenase
Query= reanno::WCS417:GFF827 (481 letters) >lcl|FitnessBrowser__azobra:AZOBR_RS29750 AZOBR_RS29750 aldehyde dehydrogenase Length = 484 Score = 525 bits (1351), Expect = e-153 Identities = 258/479 (53%), Positives = 344/479 (71%), Gaps = 6/479 (1%) Query: 4 AQRFDNYINGQWVAGADYCVNLNPSELSDVIGEYAKADVTQVNAAIDAARAAFPAWSTSG 63 + R N+I G W G + +NPS L ++ G Y+ A V A+ AARAA P W + Sbjct: 5 SDRITNFIAGSWRPGRERLDIVNPSNLDELAGSYSLAGADDVAEAVAAARAAQPQWRAAT 64 Query: 64 IQARHDALDKVGSEILARREELGTLLAREEGKTLPEAIGEVTRAGNIFKFFAGECLRLSG 123 ++ R LD + + R++EL + A E GKT+P+A+GE+TRA ++ +FFA E LR G Sbjct: 65 VEQRSLVLDAISRALFDRKDELARIAATEGGKTIPDALGEITRAAHLARFFAAEALRAPG 124 Query: 124 DYVPSVRPGVNVEVTREALGVVGLITPWNFPIAIPAWKIAPALAYGNCVVIKPAELVPGC 183 + + SVRPGV V+VTRE +GV+GL+TPWNFP+A P WKIAPALA+GN V+ KP+E PG Sbjct: 125 ETLGSVRPGVEVDVTREPVGVIGLVTPWNFPVATPMWKIAPALAFGNAVIWKPSEKTPGI 184 Query: 184 AWALAEIISRA----GFPAGVFNLVMGSGRVVGDVLVNSPKVDGISFTGSVGVGRQIAVS 239 + A+ +I+ A G PA +FNLV+G+G +G +V++ VD +SFTGSV GR+IAV Sbjct: 185 SIAVTRLIAEALEAHGMPAALFNLVIGAGPNIGAAVVDA--VDAVSFTGSVNTGRRIAVR 242 Query: 240 CVSRQAKVQLEMGGKNPQIILDDADLKQAVELSVQSAFYSTGQRCTASSRLIVTAGIHDQ 299 C R +VQLE+GG+NP ++L DAD ++A E+ V SA++ GQRCTA+ R IV IHD Sbjct: 243 CAERMIRVQLELGGQNPLVVLGDADPERAAEIGVNSAYFHAGQRCTATGRFIVEDSIHDA 302 Query: 300 FVAAMAERMKSIKVGHALKSGTDIGPVVSQAQLDQDLKYIDIGQSEGARLVSGGGLVTCD 359 FVAAM ERM +++VGHAL T IGPV+ + QL ++L YID G EGA+L SGGG + Sbjct: 303 FVAAMTERMAALRVGHALLPETQIGPVIDEFQLTKNLHYIDTGLKEGAQLASGGGRLDRP 362 Query: 360 TEGYYLAPTLFADSEAAMRISREEIFGPVANVVRVADYEAALAMANDTEFGLSAGIATTS 419 T G++LAPTLF ++ AM I+REE+FGPVA+V+RV DYE AL +ANDT++GLS+GI T S Sbjct: 363 TRGWFLAPTLFTETSNAMTINREEVFGPVASVIRVKDYEEALHVANDTDYGLSSGIITNS 422 Query: 420 LKYANHFKRHSQAGMVMVNLPTAGVDYHVPFGGRKGSSYGSREQGRYAQEFYTVVKTSY 478 +K+A HF+ + QAGM M+NLPTAGVDYHVPFGGRK SSYG REQGR A EFYT++KT+Y Sbjct: 423 MKHARHFQANIQAGMTMLNLPTAGVDYHVPFGGRKMSSYGPREQGRSAIEFYTIIKTAY 481 Lambda K H 0.318 0.134 0.390 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 575 Number of extensions: 19 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 481 Length of database: 484 Length adjustment: 34 Effective length of query: 447 Effective length of database: 450 Effective search space: 201150 Effective search space used: 201150 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory