GapMind for catabolism of small carbon sources

 

Alignments for a candidate for exuT in Azospirillum brasilense Sp245

Align Hexuronate transporter (characterized)
to candidate AZOBR_RS23835 AZOBR_RS23835 hexuronate transporter ExuT

Query= SwissProt::P0AA78
         (432 letters)



>FitnessBrowser__azobra:AZOBR_RS23835
          Length = 428

 Score =  432 bits (1110), Expect = e-125
 Identities = 202/412 (49%), Positives = 284/412 (68%), Gaps = 4/412 (0%)

Query: 1   MRKIKGLRWYMIALVTLGTVLGYLTRNTVAAAAPTLMEELNISTQQYSYIIAAYSAAYTV 60
           M+ ++GLRW ++AL+ LGT++ Y+ RNT+   AP L EEL+ +T+QYSYI++ +   Y++
Sbjct: 1   MKIVRGLRWKVLALIMLGTIINYIDRNTLGILAPMLKEELHFTTEQYSYIVSVFQLCYSL 60

Query: 61  MQPVAGYVLDVLGTKIGYAMFAVLWAVFCGATALAGSWGGLAVARGAVGAAEAAMIPAGL 120
           MQP+AGYV D++G K GYAMFA +W       A +G W  +A  RG +G +EAA +P+G 
Sbjct: 61  MQPIAGYVTDLIGLKFGYAMFAFVWGSAAALHAFSGGWQSMAFFRGLLGISEAAAMPSGA 120

Query: 121 KASSEWFPAKERSIAVGYFNVGSSIGAMIAPPLVVWAIVMHSWQMAFIISGALSFIWAMA 180
           K ++ WFPAKERSIA G+FN GSS+GAMIAPPLV+W  V  SWQ+AF+++G L    +M 
Sbjct: 121 KTAALWFPAKERSIATGWFNTGSSVGAMIAPPLVIWLSVTWSWQVAFVVTGMLGVGLSML 180

Query: 181 WLIFYKHPRDQKHLTDEERDYIINGQEAQHQVSTAKKMSVGQILRNRQFWGIALPRFLAE 240
           WL  Y++P +   LT EE  YI++GQE   QV   K  S+ +++  R+FWGIA  RFL E
Sbjct: 181 WLALYRNPENHPRLTKEEHAYILDGQE---QVQLPKP-SMKRVVTMRKFWGIAAARFLTE 236

Query: 241 PAWGTFNAWIPLFMFKVYGFNLKEIAMFAWMPMLFADLGCILGGYLPPLFQRWFGVNLIV 300
           PAW TF+ WIPL+M    G ++K+ A+FAW+P LFAD+GC+L GYL P F + F ++L+ 
Sbjct: 237 PAWQTFSFWIPLYMVSTRGMDIKQFALFAWLPFLFADIGCVLSGYLSPFFAKRFRMSLVN 296

Query: 301 SRKMVVTLGAVLMIGPGMIGLFTNPYVAIMLLCIGGFAHQALSGALITLSSDVFGRNEVA 360
           SR   + +GAV MIGP +IGL ++P  AI L  +G FAHQ LS  L  L +D F + +VA
Sbjct: 297 SRIAGIGIGAVCMIGPALIGLTSSPITAIFLFSVGAFAHQMLSSLLYALVTDTFEKQDVA 356

Query: 361 TANGLTGMSAWLASTLFALVVGALADTIGFSPLFAVLAVFDLLGALVIWTVL 412
           TA G  GM+ ++   +F+L++G LA TIG+ PLF  L+VFD+   +V+  VL
Sbjct: 357 TATGFGGMAGYMGGMIFSLIIGQLASTIGYEPLFVCLSVFDITAFIVVLVVL 408


Lambda     K      H
   0.326    0.138    0.437 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 639
Number of extensions: 29
Number of successful extensions: 2
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 432
Length of database: 428
Length adjustment: 32
Effective length of query: 400
Effective length of database: 396
Effective search space:   158400
Effective search space used:   158400
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 15 ( 7.1 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 40 (21.7 bits)
S2: 51 (24.3 bits)

This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory