Align L-arabinonate dehydratase; ArDHT; D-fuconate dehydratase; Galactonate dehydratase; L-arabonate dehydratase; EC 4.2.1.25; EC 4.2.1.67; EC 4.2.1.6 (characterized)
to candidate AZOBR_RS15015 AZOBR_RS15015 dihydroxy-acid dehydratase
Query= SwissProt::B5ZZ34 (579 letters) >FitnessBrowser__azobra:AZOBR_RS15015 Length = 621 Score = 242 bits (617), Expect = 4e-68 Identities = 181/545 (33%), Positives = 268/545 (49%), Gaps = 65/545 (11%) Query: 43 GRPVIGILNTWSDMTPCNGHLRELAEKVKAGVWEAGGFPLEVPVFSASEN-TFRPTAMMY 101 G+P+I I N+++ P + HL++L + V + +AGG E + + M+Y Sbjct: 33 GKPIIAIANSFTQFVPGHVHLKDLGQLVAREIEKAGGVAKEFNTIAVDDGIAMGHDGMLY 92 Query: 102 ----RNLAALAVEEAIRGQPMDGCVLLVGCDKTTPSLLMGAASCDLPSIVVTGGPMLNGY 157 R L A AVE + D V + CDK TP +LM A ++P++ V+GGPM G Sbjct: 93 SLPSRELIADAVEYMVNAHCADALVCISNCDKITPGMLMAAMRLNIPAVFVSGGPMEAGK 152 Query: 158 FRGERVGSGTHLWKFSEMVKAGEMTQAEFLEAEASMSRSS----GTCNTMGTASTMASMA 213 L MV A + T ++ E A M R S G+C+ M TA++M + Sbjct: 153 VNWRGKTKAVDL--IDAMVAAADPTVSD--EEAAVMERGSCPTCGSCSGMFTANSMNCLT 208 Query: 214 EALGMALSGNAAIPGVDSRRKVMAQLTGRRIVQMVK-----DDLK--PSEIMTKQAFENA 266 EALG++L GN I + RK + GR V++ + +D P I T +AFENA Sbjct: 209 EALGLSLPGNGTILATHADRKELFLAAGRMAVELCRRWYQEEDATALPRGIATFEAFENA 268 Query: 267 IRTNAAIGGSTNAVIHLLAIAGRVGIDLSLDDWDRCGRDVPTIVNLMPS-GKYLMEEFFY 325 + + A+GGSTN V+HLLA A + ++ D DR R VP + + P+ +E+ Sbjct: 269 MTLDIAMGGSTNTVLHLLAAAQEGQVPFTMADIDRLSRRVPNVCKVAPAVSDVHIEDVHK 328 Query: 326 AGGLPVVLKRLGEAGLLHKDALTVSGETVWD-----EVKDVVN----------------- 363 AGG+ +L L GLL++D TV +T+ D +VK + Sbjct: 329 AGGIFGILGELDRGGLLNRDVATVHAKTLGDALDRWDVKRTQDEGVHTMFKAAPGGIPTT 388 Query: 364 --------WNE-------DVILPAEKALTSSGGIVVLRGNLAPKGAVLKPSAASPHLLVH 408 W E VI + A + GG+ VL GN+A KG ++K + LV Sbjct: 389 IAFSQEKRWPELDLDRDKGVIRSVDSAFSKDGGLAVLFGNIAEKGCIVKTAGVDASNLVF 448 Query: 409 KGRAVVFEDIDDYKAKINDDNLDIDENCIMVMKNCGPKGYPGMAEVGNMGLPPKVLK-KG 467 G A VFE D I D + + ++V++ GP+G PGM E M P LK KG Sbjct: 449 AGPARVFESQDAAVEAILGDTVKAGD--VVVIRYEGPRGGPGMQE---MLYPTSYLKSKG 503 Query: 468 I-LDMVRISDARMSGTAYGTVVLHTSPEAAVGGPLAVVKNGDMIELDVPNRRLHLDISDE 526 + ++D R SG G + H SPEAA GG + +V++GD IE+D+PNR+++L +SDE Sbjct: 504 LGKACALVTDGRFSGGTSGLSIGHASPEAAQGGAIGLVQDGDRIEIDIPNRKINLALSDE 563 Query: 527 ELARR 531 EL RR Sbjct: 564 ELQRR 568 Lambda K H 0.318 0.135 0.408 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 928 Number of extensions: 46 Number of successful extensions: 8 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 2 Length of query: 579 Length of database: 621 Length adjustment: 37 Effective length of query: 542 Effective length of database: 584 Effective search space: 316528 Effective search space used: 316528 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory