Align Methylcrotonoyl-CoA carboxylase (EC 6.4.1.4) (characterized)
to candidate AZOBR_RS22295 AZOBR_RS22295 methylcrotonoyl-CoA carboxylase
Query= reanno::pseudo6_N2E2:Pf6N2E2_2192 (535 letters) >lcl|FitnessBrowser__azobra:AZOBR_RS22295 AZOBR_RS22295 methylcrotonoyl-CoA carboxylase Length = 535 Score = 815 bits (2105), Expect = 0.0 Identities = 397/535 (74%), Positives = 452/535 (84%) Query: 1 MATLHTQLNPRSPEFIANRDAMLGHVEALRTLLAQIRQGGGPKAQERHTSRGKLLPRERI 60 M L + LNPRS EF N DAM V LR + I+QGGG KA+++H SRGKLLPRERI Sbjct: 1 MTVLKSALNPRSAEFQTNADAMSTLVADLREKVGAIKQGGGAKARDKHLSRGKLLPRERI 60 Query: 61 NRLLDPGSPFLEISPLAAHEVYGEDVPAAGVIAGIGRVEGVECMIVANDATVKGGSYYPL 120 +LLD GSPFLE+S +AA++VY +D+PAAG+I GIG V G ECM+V NDATVKGG+Y+PL Sbjct: 61 RQLLDVGSPFLELSQMAAYKVYDDDIPAAGIITGIGSVAGQECMVVVNDATVKGGTYFPL 120 Query: 121 TVKKHLRAQTIAQQNRLPCIYLVDSGGANLPRQDEVFPDREHFGRIFFNQANMSAQGIPQ 180 TVKKHLRAQ +AQQN LPCIYLVDSGGANLP QDEVFPDR+HFGRIFFNQANMSAQGIPQ Sbjct: 121 TVKKHLRAQEVAQQNNLPCIYLVDSGGANLPNQDEVFPDRDHFGRIFFNQANMSAQGIPQ 180 Query: 181 IAVVMGSCTAGGAYVPAMADEAIMVRQQATIFLAGPPLVKAATGEVVSAEDLGGADVHCK 240 IAVVMGSCTAGGAYVPAM+DEAI+VR Q TIFL GPPLVKAATGEVVSAEDLGGADVH + Sbjct: 181 IAVVMGSCTAGGAYVPAMSDEAIIVRNQGTIFLGGPPLVKAATGEVVSAEDLGGADVHSR 240 Query: 241 ISGVADHYADSDEHALALARRSVANLNWRKQGELQHRLPIAPLYSGEELYGVVSADAKQP 300 SGV DHYA +D HALA+AR+ V+NLN K+ ++ R P P Y ELYGV+ +D ++P Sbjct: 241 TSGVTDHYAMNDAHALAMARKVVSNLNRSKRIDMDLREPQEPAYDPRELYGVIPSDPRKP 300 Query: 301 FDVREVIARLVDGSVFDEFKALFGTTLVCGFAHLHGYPIAILANNGILFAEAAQKGAHFI 360 FDVREVIAR+VDGSV DEFK L+GTTLVCGFAH+ GYP+ I+ANNGILF+E+A KGAHF+ Sbjct: 301 FDVREVIARVVDGSVLDEFKPLYGTTLVCGFAHIFGYPVGIIANNGILFSESALKGAHFV 360 Query: 361 ELACQRGIPLLFLQNITGFMVGQKYEAGGIAKHGAKLVTAVACAKVPKFTVIIGGSFGAG 420 EL CQRGIPL+FLQNITGFMVG+KYEAGGIAK GAKLVTAVACAKVPKFTVIIGGS+GAG Sbjct: 361 ELCCQRGIPLVFLQNITGFMVGRKYEAGGIAKDGAKLVTAVACAKVPKFTVIIGGSYGAG 420 Query: 421 NYGMCGRAYDPRFLWMWPNARIGVMGAEQAAGVLVQVKREQAERSGHPFSAEQEAEIKQP 480 NYGMCGRAY PRFLWMWPN+RI VMG EQAAGVL QV+R+ E G ++ E+E K P Sbjct: 421 NYGMCGRAYSPRFLWMWPNSRISVMGGEQAAGVLAQVRRDAMESQGRSWAPEEEEAFKAP 480 Query: 481 ILDQYEEQGHPYYSSARLWDDGVIDPAQTRDVLGLALSASLNAPIEPSRFGVFRM 535 I QYE+QGHPYY+SARLWDDG+IDPA TR VLGL LSASLNAP+E + FGVFRM Sbjct: 481 IRQQYEDQGHPYYASARLWDDGIIDPADTRMVLGLGLSASLNAPVEKTTFGVFRM 535 Lambda K H 0.321 0.137 0.411 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 1036 Number of extensions: 40 Number of successful extensions: 1 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 535 Length of database: 535 Length adjustment: 35 Effective length of query: 500 Effective length of database: 500 Effective search space: 250000 Effective search space used: 250000 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory