GapMind for catabolism of small carbon sources

 

Alignments for a candidate for davT in Azospirillum brasilense Sp245

Align 5-aminovalerate transaminase (EC 2.6.1.48) (characterized)
to candidate AZOBR_RS19025 AZOBR_RS19025 acetylornithine aminotransferase

Query= BRENDA::Q9I6M4
         (426 letters)



>FitnessBrowser__azobra:AZOBR_RS19025
          Length = 389

 Score =  193 bits (491), Expect = 7e-54
 Identities = 137/416 (32%), Positives = 197/416 (47%), Gaps = 57/416 (13%)

Query: 26  VVAERAENSTVWDVEGREYIDFAGGIAVLNTGHLHPKVIAAVQEQLGKLSHTC--FQVLA 83
           +V ER E   ++  +GR ++DFA G+AV   GH +P ++ A+  Q  KL HT   F+V  
Sbjct: 14  IVFERGEGPYLYATDGRRFLDFAAGVAVNVLGHANPYLVEALTAQAHKLWHTSNLFRVAG 73

Query: 84  YEPYIELAEEIAKRVP-GDFPKKTLLVTSGSEAVENAVKIAR------AATGRAGVIAFT 136
            E        +AKR+    F        SG+EA E   K+ R          R  +I F 
Sbjct: 74  QE-------SLAKRLTEATFADTVFFTNSGAEAWECGAKLIRKYHYEKGDKARTRIITFE 126

Query: 137 GAYHGRTMMTLGLTG--KVV----PYSAGMGLMPGGIFRALAPCELHGVSEDDSIASIER 190
            A+HGRT+  +      K++    P   G  L+P G   A+                   
Sbjct: 127 QAFHGRTLAAVSAAQQEKLIKGFGPLLDGFDLVPFGDLEAV------------------- 167

Query: 191 IFKNDAQPQDIAAIIIEPVQGEGGFYVNSKSFMQRLRALCDQHGILLIADEVQTGAGRTG 250
               +A   + A I +EP+QGEGG    S  F++ LR +CD+HG+LL  DE+Q G GRTG
Sbjct: 168 ---RNAVTDETAGICLEPIQGEGGIRAGSVEFLRGLREICDEHGLLLFLDEIQCGMGRTG 224

Query: 251 TFFATEQLGIVPDLTTFAKSVGGGFPISGVAGKAEIMDAIAPGGLGGTYAGSPIACAAAL 310
             FA E  GI PD+   AK +GGGFP+       +    +  G  G TY G+P+A A   
Sbjct: 225 KLFAHEWAGITPDVMAVAKGIGGGFPLGACLATEKAASGMTAGTHGSTYGGNPLATAVGN 284

Query: 311 AVLKVFEEEKLLERSQAVGERLKAGLREIQAKH-KVIGDVRGLGSMVAIELFEGGDTHKP 369
           AVL    E   L+  Q +G  L+  L  + A++  V   VRG G M+ +           
Sbjct: 285 AVLDKVLEPGFLDHVQRIGGLLQDRLAGLVAENPAVFKGVRGKGLMLGL----------A 334

Query: 370 AAELVSKIVVRAREKGLILLSCGTYYNVIRFLMPVTIPDAQLEKGLAILAECFDEL 425
               V  +VV  R  GL+ +  G   NV+R L P+ I +A++E+ +AILA+   EL
Sbjct: 335 CGPAVGDVVVALRANGLLSVPAGD--NVVRLLPPLNIGEAEVEEAVAILAKTAKEL 388


Lambda     K      H
   0.319    0.137    0.393 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 451
Number of extensions: 22
Number of successful extensions: 4
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 426
Length of database: 389
Length adjustment: 31
Effective length of query: 395
Effective length of database: 358
Effective search space:   141410
Effective search space used:   141410
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.8 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory