GapMind for catabolism of small carbon sources

 

Alignments for a candidate for gcdG in Azospirillum brasilense Sp245

Align succinyl-CoA-glutarate CoA-transferase (EC 2.8.3.13) (characterized)
to candidate AZOBR_RS19675 AZOBR_RS19675 CoA transferase

Query= reanno::pseudo5_N2C3_1:AO356_10845
         (406 letters)



>FitnessBrowser__azobra:AZOBR_RS19675
          Length = 400

 Score =  557 bits (1436), Expect = e-163
 Identities = 273/405 (67%), Positives = 321/405 (79%), Gaps = 7/405 (1%)

Query: 2   GALSHLRVLDLSRVLAGPWAGQILADLGADVIKVERPGNGDDTRAWGPPFLKDARGENTT 61
           G LSH+RVL+LSRVLAGPWA Q LADLGADVIKVERPG GDDTRAWGPP+  +       
Sbjct: 3   GPLSHVRVLELSRVLAGPWAAQTLADLGADVIKVERPGAGDDTRAWGPPWAGE------- 55

Query: 62  EAAYYLSANRNKQSVTIDFTRPEGQRLVRELAAKSDILIENFKVGGLAAYGLDYDSLKAI 121
           E+AY+LS NR K+S+TIDF RPEGQ LVR+LAA++D++IENFKVGGL  YGLDYDSLKAI
Sbjct: 56  ESAYFLSTNRGKRSITIDFERPEGQELVRKLAAQADVVIENFKVGGLVKYGLDYDSLKAI 115

Query: 122 NPQLIYCSITGFGQTGPYAKRAGYDFMIQGLGGLMSLTGRPEGDEGAGPVKVGVALTDIL 181
           NP L+YCSITGFGQ GPYAKRAGYDFMIQG+GGLMS+TG+P+ + G GPVKVGVA+TD+ 
Sbjct: 116 NPGLVYCSITGFGQDGPYAKRAGYDFMIQGMGGLMSITGQPDTEAGGGPVKVGVAVTDVF 175

Query: 182 TGLYSTAAILAALAHRDHVGGGQHIDMALLDVQVACLANQAMNYLTTGNAPKRLGNAHPN 241
           TGLY+T  +L ALAHRD  G GQ +++ALLDVQVA LANQAMNYL  G AP+RLGNAHPN
Sbjct: 176 TGLYATIGVLGALAHRDRTGEGQWVNLALLDVQVAVLANQAMNYLVGGKAPQRLGNAHPN 235

Query: 242 IVPYQDFPTADGDFILTVGNDGQFRKFAEVAGQPQWADDPRFATNKVRVANRAVLIPLIR 301
           IVPYQ F T DG  IL VGNDGQF KF +VAG+P+ A DPR+ATN  RVANR  L+P++ 
Sbjct: 236 IVPYQAFATLDGHIILAVGNDGQFAKFCQVAGRPELAQDPRYATNPARVANRKELVPILE 295

Query: 302 QATVFKTTAEWVTQLEQAGVPCGPINDLAQVFADPQVQARGLAMELPHLLAGKVPQVASP 361
                +T+ +W+  LE  GVPCGPIND++QVFADP VQAR +  +LPH  AG VP VASP
Sbjct: 296 LLLEQRTSRDWLAALEAVGVPCGPINDVSQVFADPHVQARHIHQDLPHPTAGTVPTVASP 355

Query: 362 IRLSETPVEYRNAPPLLGEHTLEVLQRVLGLDEAAVMAFREAGVL 406
           IR S TP+E+  APP LG+HT  VL+  LGL  A + A RE GV+
Sbjct: 356 IRYSATPIEHTAAPPTLGQHTDAVLEEALGLCAADIAALREKGVV 400


Lambda     K      H
   0.319    0.137    0.408 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 631
Number of extensions: 29
Number of successful extensions: 2
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 406
Length of database: 400
Length adjustment: 31
Effective length of query: 375
Effective length of database: 369
Effective search space:   138375
Effective search space used:   138375
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.7 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory