GapMind for catabolism of small carbon sources

 

Alignments for a candidate for lysN in Azospirillum brasilense Sp245

Align 2-aminoadipate transaminase (EC 2.6.1.39) (characterized)
to candidate AZOBR_RS19630 AZOBR_RS19630 4-aminobutyrate aminotransferase

Query= reanno::Putida:PP_4108
         (416 letters)



>FitnessBrowser__azobra:AZOBR_RS19630
          Length = 428

 Score =  357 bits (916), Expect = e-103
 Identities = 185/413 (44%), Positives = 256/413 (61%), Gaps = 2/413 (0%)

Query: 5   SISQSIAIVHPITLSHGRNAEVWDTDGKRYIDFVGGIGVLNLGHCNPAVVEAIQAQATRL 64
           ++ + +A   P+ +    NAE+WD +G R+IDF GGI VLN GH +P ++EA++AQ  R 
Sbjct: 13  AVPRGLANAMPVYVDRAENAELWDVEGNRFIDFAGGIAVLNTGHRHPKIIEAVKAQLDRF 72

Query: 65  THYAFNAAPHGPYLALMEQLSQFVPVSYPLAGMLTNSGAEAAENALKVARGATGKRAIIA 124
           TH      P+  ++ L E+L+  VP S P       +GAEA ENA+K+AR  TG+  +IA
Sbjct: 73  THTCAMVTPYESFVTLAERLNALVPGSTPKKTAFFTTGAEAVENAVKIARAHTGRPGVIA 132

Query: 125 FDGGFHGRTLATLNLNGKVAPYKQRVGELPGPVYHLPYPSADTGVTCEQALKAMDRLFSV 184
           F G FHGRTL  + L GKV PYK   G  P  VYH P+P+A  GV+ + +LKA+++LF  
Sbjct: 133 FSGAFHGRTLLAMALTGKVVPYKVGFGPFPAEVYHAPFPNAYRGVSVQDSLKALEQLFKS 192

Query: 185 ELAVEDVAAFIFEPVQGEGGFLALDPAFAQALRRFCDERGILIIIDEIQSGFGRTGQRFA 244
           ++    VAA I EPVQGEGGF    P F QALR+ CDE GIL+IIDEIQ+GF RTG+ FA
Sbjct: 193 DVDATRVAAIIVEPVQGEGGFNIAPPEFLQALRKICDENGILLIIDEIQTGFARTGKMFA 252

Query: 245 FPRLGIEPDLLLLAKSIAGGMPLGAVVGRKELMAALPKGGLGGTYSGNPISCAAALASLA 304
               G+EPDL+ +AKS+AGG PL AV G+ E+M A   GG+GGTY+G+P++  AALA L 
Sbjct: 253 IEHSGVEPDLMTMAKSLAGGFPLSAVTGKAEIMDAPIPGGIGGTYAGSPLATTAALAVLD 312

Query: 305 QMTDENLATWGERQEQAIVSRYERWKASGLSPYIGRLTGVGAMRGIEFANADGSPAP-AQ 363
            + +E L        + I  R+           IG +  +G M  +E     G+  P A+
Sbjct: 313 VIEEEKLIQRSNDLGERIAGRFRTMAQRNTLSVIGDVRNLGGMIAMELVKDRGTKEPAAE 372

Query: 364 LAKVMEA-ARARGLLLMPSGKARHIIRLLAPLTIEAEVLEEGLDILEQCLAEL 415
           L K + A A  +GL+L+  G   ++IR+L PLT    +++EGLDI+E+ L EL
Sbjct: 373 LTKALVAKAAEKGLVLLSCGTYGNVIRILVPLTASDALVDEGLDIIERSLEEL 425


Lambda     K      H
   0.320    0.137    0.402 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 518
Number of extensions: 14
Number of successful extensions: 2
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 416
Length of database: 428
Length adjustment: 32
Effective length of query: 384
Effective length of database: 396
Effective search space:   152064
Effective search space used:   152064
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.8 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory