Align D-2-hydroxyglutarate--pyruvate transhydrogenase DLD2; D-2HG--pyruvate transhydrogenase DLD2; Actin-interacting protein 2; D-lactate dehydrogenase [cytochrome] 2, mitochondrial; D-lactate ferricytochrome C oxidoreductase; D-LCR; EC 1.1.99.40; EC 1.1.2.4 (characterized)
to candidate AZOBR_RS29745 AZOBR_RS29745 2-hydroxyacid dehydrogenase
Query= SwissProt::P46681 (530 letters) >lcl|FitnessBrowser__azobra:AZOBR_RS29745 AZOBR_RS29745 2-hydroxyacid dehydrogenase Length = 467 Score = 301 bits (771), Expect = 3e-86 Identities = 169/459 (36%), Positives = 262/459 (57%), Gaps = 19/459 (4%) Query: 82 SESEDLSFYNEDWMRKYKGQSKLVLRPKSVEKVSLILNYCNDEKIAVVPQGGNTGLVGGS 141 ++ + + + E W + G+S V+ P S E ++ ++ C + + +VPQGGNTGL G S Sbjct: 16 TDPDTMQPFMESWRDGWVGRSPAVVLPDSTEALAAVVRICAETRTPIVPQGGNTGLTGAS 75 Query: 142 VPIFD--ELILSLANLNKIRDFDPVSGILKCDAGVILENANNYVMEQNYMFPLDLGAKGS 199 P D E++LS LN+IR+ D + + +AG IL N N + +FP+ L A+GS Sbjct: 76 QPHADGTEIVLSTNRLNRIREIDIDNDTMTVEAGCILANIQNAARDIGRLFPMSLAAEGS 135 Query: 200 CHVGGVVATNAGGLRLLRYGSLHGSVLGLEVVMPNGQIVNSMHSMRKDNTGYDLKQLFIG 259 C +GG +ATNAGG++++RYG++ V GLEVV+P+G+I + + +RKDN GYD+KQ+FIG Sbjct: 136 CQIGGNIATNAGGVQVVRYGNMRNLVAGLEVVLPDGRIWDGLRGLRKDNAGYDMKQIFIG 195 Query: 260 SEGTIGIITGVSILTVPKPKAFNVSYLSVESFEDVQKVFVRARQELSEILSAFEFMDAKS 319 SEGT+GI+T + P P+A + ++V + D + RA+ + + FE + Sbjct: 196 SEGTLGIVTAAVLKLSPLPRATATALVAVSAPSDAVDLLTRAKGVAGDRIITFELIQRDC 255 Query: 320 QVLAKSQLKDAAFPLEDEHPFYILIETS---GSNKDHDDSKLETFLENVMEEGIVTDGVV 376 +A+ + D PL D +P+Y+L+E + G N+ + LE LE ME G V DGVV Sbjct: 256 IDVARRHVPDVPDPLRDRYPWYVLVELADQDGGNRLME--MLEGILEAGMEAGEVLDGVV 313 Query: 377 AQDETELQNLWKWREMIPEASQANGGVYKYDVSLPLKDLYSLVEATNARLSEAELVGDSP 436 A + + +LW+ RE IPE + G +K+DVS+P+ + ++ NA L E E G P Sbjct: 314 AASKAQADSLWRIREGIPEGQKREGVSFKHDVSVPISRVARFLDRANAAL-ERECPGIRP 372 Query: 437 KPVVGAIGYGHVGDGNLHLNVAVREYNKNIE-----KTLEPFVYEFVSSKHGSVSAEHGL 491 +GH+GDGN+H N E E T+ V++ V GS+SAEHG+ Sbjct: 373 ------FAFGHLGDGNIHFNPIQAEGGDPAEWKAKLATVNAIVHDIVVELGGSISAEHGI 426 Query: 492 GFQKKNYIGYSKSPEEVKMMKDLKVHYDPNGILNPYKYI 530 G + + + KS E+ MM LK +DP+ I+NP K + Sbjct: 427 GRLRIDEMPRYKSAVELDMMATLKRAFDPHNIMNPGKIL 465 Lambda K H 0.316 0.135 0.385 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 523 Number of extensions: 18 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 530 Length of database: 467 Length adjustment: 34 Effective length of query: 496 Effective length of database: 433 Effective search space: 214768 Effective search space used: 214768 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.6 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory