Align mannose-1-phosphate guanylyltransferase (EC 2.7.7.13) (characterized)
to candidate AZOBR_RS33830 AZOBR_RS33830 mannose-1-phosphate guanylyltransferase
Query= BRENDA::P07874 (481 letters) >FitnessBrowser__azobra:AZOBR_RS33830 Length = 481 Score = 526 bits (1354), Expect = e-154 Identities = 257/468 (54%), Positives = 327/468 (69%) Query: 3 PVILSGGSGSRLWPLSRKQYPKQFLALTGDDTLFQQTIKRLAFDGMQAPLLVCNKEHRFI 62 PVILSGG+GSRLWPLSR YPKQFL L + T+ Q+T R++ D APL++CN+EHRFI Sbjct: 12 PVILSGGAGSRLWPLSRASYPKQFLPLASEQTMIQETALRVSSDRFAAPLVICNEEHRFI 71 Query: 63 VQEQLEAQNLASQAILLEPFGRNTAPAVAIAAMKLVAEGRDELLLILPADHVIEDQRAFQ 122 V EQL A +++ I+LEP GRNTAPAV IAA+ L+ G D L+L++P+DHVI F Sbjct: 72 VAEQLRAASVSPAEIILEPVGRNTAPAVCIAALALLESGEDRLMLVMPSDHVIARSDRFL 131 Query: 123 QALALATNAAEKGEMVLFGIPASRPETGYGYIRASADAQLPEGVSRVQSFVEKPDEARAR 182 +A+ A AA G +V FGI PETGYGYI+A + + V+ FVEKPD A A+ Sbjct: 132 EAVEQAAVAAAAGSLVTFGITPVAPETGYGYIKAGGPLGTGDNIRVVERFVEKPDLATAQ 191 Query: 183 EFVAAGGYYWNSGMFLFRASRYLEELKKHDADIYDTCLLALERSQHDGDLVNIDAATFEC 242 ++A G Y WNSG+FLF A+ Y+ EL+K + I + C A + D ++ F Sbjct: 192 TYLADGRYLWNSGIFLFSAAAYVAELEKSNPAIVEACRQARSSAARDLTFCRLEKEAFAA 251 Query: 243 CPDNSIDYAVMEKTSRACVVPLSAGWNDVGSWSSIWDVHAKDANGNVTKGDVLVHDSHNC 302 P +S+DYAVMEKT +A VV + GWNDVG+WS++WD+ KD +GNV GDV++H++ N Sbjct: 252 SPSDSVDYAVMEKTDQAAVVAVDMGWNDVGAWSALWDIAEKDESGNVVHGDVVLHNARNS 311 Query: 303 LVHGNGKLVSVIGLEDIVVVETKDAMMIAHKDRVQDVKHVVKDLDAQGRSETQNHCEVYR 362 V +LV+V GL+D+VV+ T DA+++A + VQDVK +V+ L A+ R E H VYR Sbjct: 312 YVRSEEQLVAVAGLDDVVVIATDDAVLVADRKHVQDVKLIVERLKAEKRDEHALHTTVYR 371 Query: 363 PWGSYDSVDMGGRFQVKHITVKPGARLSLQMHHHRAEHWIVVSGTAQVTCDDKTFLLTEN 422 PWGSY +D+G RFQVK ITVKPG RLSLQMHHHRAEHWIVV GTA VTC +K LL EN Sbjct: 372 PWGSYRGIDIGDRFQVKRITVKPGERLSLQMHHHRAEHWIVVQGTALVTCGEKQELLFEN 431 Query: 423 QSTYIPIASVHRLANPGKIPLEIIEVQSGSYLGEDDIERLEDVYGRTA 470 QS YIP+ + HRL NPGK+PL +IEVQSGSYLGEDDI R ED YGR A Sbjct: 432 QSVYIPMGTTHRLENPGKVPLHLIEVQSGSYLGEDDIVRFEDGYGRVA 479 Lambda K H 0.319 0.134 0.400 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 638 Number of extensions: 22 Number of successful extensions: 1 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 481 Length of database: 481 Length adjustment: 34 Effective length of query: 447 Effective length of database: 447 Effective search space: 199809 Effective search space used: 199809 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory