Align Inositol transport system ATP-binding protein (characterized)
to candidate AZOBR_RS31210 AZOBR_RS31210 sugar ABC transporter ATP-binding protein
Query= reanno::Phaeo:GFF717 (261 letters) >FitnessBrowser__azobra:AZOBR_RS31210 Length = 516 Score = 153 bits (387), Expect = 6e-42 Identities = 91/243 (37%), Positives = 136/243 (55%), Gaps = 5/243 (2%) Query: 4 SQPLIRMQGIEKHFGSVIALAGVSVDVFPGECHCLLGDNGAGKSTFIKTMSGVHKPTKGD 63 S PL+ ++G+ K F V AL GV V GE H LLG+NGAGKST IKT++GV++ G Sbjct: 9 SPPLLAIRGLSKAFLGVQALDGVDFTVRHGEIHALLGENGAGKSTLIKTLTGVYQRDAGT 68 Query: 64 ILFEGQPLHFADPRDAIAAGIATVHQHLAMIPLMSVSRNFFMGNEPIRKIGPLKLFDHDY 123 + EG+ + +A I TV+Q + ++P +SV+ N F+G +P+R L D Sbjct: 69 VTLEGRAIAPRGVEEAQRLHIGTVYQEVNLLPNLSVAENLFLGRQPMR----FGLVDRGA 124 Query: 124 ANRITMEEMRKMGINLRGPDQAVGTLSGGERQTVAIARAVHFGAKVLILDEPTSALGVRQ 183 R + G+ L +G S +Q VAIARAV AKVLILDEPT++L ++ Sbjct: 125 MRRRARAVLIPYGLTL-DVTAPLGRFSVATQQIVAIARAVDMSAKVLILDEPTASLDAQE 183 Query: 184 TANVLATIDKVRKQGVAVVFITHNVRHALAVGDRFTVLNRGKTLGTAQRGDISAEELQDM 243 A + + +R +G+ +VF+TH + A+ DR TVL G+ +G + ++ +L M Sbjct: 184 VAVLFKVMRTLRSRGIGIVFVTHFLDQVYALCDRITVLRNGRLVGERRTAELPRLDLVAM 243 Query: 244 MAG 246 M G Sbjct: 244 MLG 246 Score = 82.4 bits (202), Expect = 2e-20 Identities = 56/238 (23%), Positives = 112/238 (47%), Gaps = 9/238 (3%) Query: 6 PLIRMQGIEKHFGSVIALAGVSVDVFPGECHCLLGDNGAGKSTFIKTMSGVHKPTKGDIL 65 PL+R +G +G ++ +D+ PGE L G G+G++ + + G+ + +G+ Sbjct: 270 PLVRFRG----YGKARSVEPFDLDIRPGEVVGLAGLLGSGRTETARLVFGMDRADRGEAA 325 Query: 66 FEGQPLHFADPRDAIAAGIATVHQHL---AMIPLMSVSRNFFMGNEPIRKIGPLKLFDHD 122 +GQ + PRDAI G + ++ +SV N + + + G L+ Sbjct: 326 VDGQAVRLRGPRDAIRLGFGFCPEDRKKEGIVGALSVRENIILALQA--RQGWLRPIPRC 383 Query: 123 YANRITMEEMRKMGINLRGPDQAVGTLSGGERQTVAIARAVHFGAKVLILDEPTSALGVR 182 I +R + I +Q + LSGG +Q +AR + ++LILDEPT + V Sbjct: 384 RQEEIADRFIRLLDIRTPHAEQPIQLLSGGNQQKALLARWLATEPRLLILDEPTRGIDVG 443 Query: 183 QTANVLATIDKVRKQGVAVVFITHNVRHALAVGDRFTVLNRGKTLGTAQRGDISAEEL 240 A ++ I+++ G+A++ ++ + +A R VL + + + G+++ + + Sbjct: 444 AHAEIIRLIERLCADGMALLVVSSELEEIVAYSRRVVVLRDRRHVAELRGGEVAVDRI 501 Lambda K H 0.321 0.137 0.395 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 343 Number of extensions: 17 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 2 Length of query: 261 Length of database: 516 Length adjustment: 30 Effective length of query: 231 Effective length of database: 486 Effective search space: 112266 Effective search space used: 112266 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.9 bits) S2: 49 (23.5 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory