Align Inositol transport ATP-binding protein IatA, component of The myoinositol (high affinity)/ D-ribose (low affinity) transporter IatP/IatA/IbpA. The structure of IbpA with myoinositol bound has been solved (characterized)
to candidate AZOBR_RS31245 AZOBR_RS31245 ABC transporter ATP-binding protein
Query= TCDB::B8H229 (515 letters) >FitnessBrowser__azobra:AZOBR_RS31245 Length = 518 Score = 350 bits (898), Expect = e-101 Identities = 203/509 (39%), Positives = 313/509 (61%), Gaps = 11/509 (2%) Query: 1 MTLLDVSQVSKSFPGVRALDQVDLVVGVGEVHALLGENGAGKSTLIKILSAAHAADA--G 58 M +L++ ++K+FPGV+ALD V+L V GE+HAL+GENGAGKSTL+K+LS + + G Sbjct: 3 MPILEMKGITKTFPGVKALDDVNLSVREGEIHALIGENGAGKSTLMKVLSGVYPQGSFDG 62 Query: 59 TVTFAGQVLDPRDAPLRRQQLGIATIYQEFNLFPELSVAENMYLGREPRRLGLVDWSRLR 118 + F GQ R ++LGI I+QE L P LS+ EN++LG E G++DW Sbjct: 63 EIRFRGQPQAFRGIA-DSERLGIIIIHQELALVPLLSITENLFLGNEQASRGVIDWDAAT 121 Query: 119 ADAQALLNDLGLPLNPDAPVRGLTVAEQQMVEIAKAMTLNARLIIMDEPTAALSGREVDR 178 A+ LL +GL P+ + + V +QQ+VEIAKA++ +L+I+DEPTA+L+ + D Sbjct: 122 LRARELLRLVGLHDPPETLITDIGVGKQQLVEIAKALSKEVKLLILDEPTASLNESDSDA 181 Query: 179 LHAIIAGLKARSVSVIYVSHRLGEVKAMCDRYTVMRDGRFVASGDVADVEVAD--MVRLM 236 L ++ KAR ++ I +SH+L E+ + DR T++RDG V + D + V+ ++R M Sbjct: 182 LLELLLQFKARGIASILISHKLNEIAKVADRVTILRDGTTVETLDCREAVVSQDRIIRGM 241 Query: 237 VGRHVEFERRKRRRPPGAVVLKVEGVTPAAPRLSAPGYLRQVSFAARGGEIVGLAGLVGA 296 VGR + +R PG V+ +V+G + P +R V+ R GE+VG+AGL+GA Sbjct: 242 VGRALSDRYPRRTTVPGDVLFEVKGWSADHPAHPGRRVVRDVNLTVRRGEVVGIAGLMGA 301 Query: 297 GRTDLARLIFGAD--PIAAGRVLVDDKPLRLRSPRDAIQAGIMLVPEDRKQQGCFLDHSI 354 GRT+ A +FG G+ +D + + + + A+ G+ EDRK G LD+ I Sbjct: 302 GRTEFAMSLFGRSYGRNIRGQAFLDGREIDVSTISRAMANGLAYATEDRKHLGLVLDNDI 361 Query: 355 RRNLSLPSLKALSALGQWV-DERAERDLVETYRQKLRIKMADAETAIGKLSGGNQQKVLL 413 R N++L +L+ ++ +WV D E + E +R++LRI+ AD LSGGNQQKV+L Sbjct: 362 RHNVTLANLRGVAK--RWVIDHEREVQVAEEFRRRLRIRCADVFQETVNLSGGNQQKVVL 419 Query: 414 GRAMALTPKVLIVDEPTRGIDIGAKAEVHQVLSDLADLGVAVVVISSELAEVMAVSDRIV 473 + + P+VLI+DEPTRGID+GAK E++ +++ L G VV+ISSE+ E++ V+DRI Sbjct: 420 SKWLFADPQVLILDEPTRGIDVGAKYEIYTIINQLVAEGRGVVLISSEMPELLGVADRIY 479 Query: 474 VFREGVIVADLDAQTATEEGLM-AYMATG 501 V G +VA++ A A++E +M A M +G Sbjct: 480 VMNAGEMVAEMPAAEASQEKIMGAIMRSG 508 Lambda K H 0.320 0.136 0.380 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 699 Number of extensions: 37 Number of successful extensions: 9 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 515 Length of database: 518 Length adjustment: 35 Effective length of query: 480 Effective length of database: 483 Effective search space: 231840 Effective search space used: 231840 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory