Align Glutarate-semialdehyde dehydrogenase; EC 1.2.1.- (characterized)
to candidate AZOBR_RS19635 AZOBR_RS19635 succinate-semialdehyde dehydrogenase
Query= SwissProt::Q9I6M5 (483 letters) >FitnessBrowser__azobra:AZOBR_RS19635 Length = 485 Score = 681 bits (1756), Expect = 0.0 Identities = 334/482 (69%), Positives = 399/482 (82%), Gaps = 1/482 (0%) Query: 1 MQLKDAKLFRQQAYVDGAWVDADNGQTIKVNNPATGEIIGSVPKMGAAETRRAIEAADKA 60 + L D L R QAYV+G W DA +G+T V NPATGE + V +GA ETR+AI AAD A Sbjct: 1 LSLNDQSLLRTQAYVNGVWRDAFSGKTFAVTNPATGEELAQVADVGAEETRQAINAADAA 60 Query: 61 LPAWRALTAKERANKLRRWFDLMIENQDDLARLMTIEQGKPLAEAKGEIAYAASFLEWFG 120 LPAWRA TAKERA LRRWF+L++ Q+DLA LMT+EQGKPLAEA+GE+AY ASF+EWF Sbjct: 61 LPAWRAKTAKERAAILRRWFELIMAAQEDLAVLMTLEQGKPLAEARGEVAYGASFIEWFA 120 Query: 121 EEAKRIYGDTIPGHQPDKRIIVIKQPIGVTAAITPWNFPSAMITRKAGPALAAGCTMVLK 180 EE KR+YGD IP +KRI+V+K+PIGV AAITPWNFP+AMITRK GPALAAGCT+V+K Sbjct: 121 EEGKRVYGDVIPSFAGNKRIVVLKEPIGVVAAITPWNFPNAMITRKVGPALAAGCTIVVK 180 Query: 181 PASQTPYSALALAELAERAGIPKGVFSVVTGSAG-EVGGELTSNPIVRKLTFTGSTEIGR 239 PA TP SALALAELAERAG+P GVF++VTGS +GGELT++PIVRKL+FTGSTE+G+ Sbjct: 181 PAEDTPLSALALAELAERAGVPAGVFNIVTGSDPVAIGGELTASPIVRKLSFTGSTEVGK 240 Query: 240 QLMAECAQDIKKVSLELGGNAPFIVFDDADLDAAVEGALISKYRNNGQTCVCANRLYVQD 299 LM + A +KKVSLELGGNAPFIVFDDADLD AV+GAL SKYRN+GQTCVCANRL VQ Sbjct: 241 ILMRQSADTVKKVSLELGGNAPFIVFDDADLDEAVKGALASKYRNSGQTCVCANRLLVQA 300 Query: 300 GVYDAFVDKLKAAVAKLNIGNGLEAGVTTGPLIDAKAVAKVEEHIADAVSKGAKVVSGGK 359 GVYDAF KL AV ++ +GNG+EAGVT GP+I+ +AV KVEE + DA++KGAKV GGK Sbjct: 301 GVYDAFAAKLAEAVKQIRVGNGMEAGVTQGPMINGQAVEKVEELMGDALAKGAKVALGGK 360 Query: 360 PHALGGTFFEPTILVDVPKNALVSKDETFGPLAPVFRFKDEAEVIAMSNDTEFGLASYFY 419 H LGGTFFEPTIL V V+++E FGP+AP+F+F+ EA+ I M+NDTEFGLA+YFY Sbjct: 361 RHGLGGTFFEPTILTGVTTEMRVAREEIFGPVAPLFKFETEADAIRMANDTEFGLAAYFY 420 Query: 420 ARDLARVFRVAEQLEYGMVGINTGLISNEVAPFGGIKASGLGREGSKYGIEDYLEIKYLC 479 +RD+ RV+RVAEQLEYGMVGIN G++S EVAPFGGIK SG+GREGSKYG+ED+LEIKYLC Sbjct: 421 SRDIGRVWRVAEQLEYGMVGINEGILSTEVAPFGGIKQSGIGREGSKYGVEDFLEIKYLC 480 Query: 480 LG 481 +G Sbjct: 481 VG 482 Lambda K H 0.317 0.135 0.391 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 702 Number of extensions: 15 Number of successful extensions: 2 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 483 Length of database: 485 Length adjustment: 34 Effective length of query: 449 Effective length of database: 451 Effective search space: 202499 Effective search space used: 202499 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory